Движения биокинематических цепей

Автор работы: Пользователь скрыл имя, 21 Декабря 2014 в 21:02, реферат

Описание работы

Биомеханика — это раздел биофизики, в котором изучаются механические свойства тканей, органов и систем живого организма и механические явления, сопровождающие процессы жизнедеятельности. Пользуясь методами теоретической и прикладной механики, эта наука исследует деформацию структурных элементов тела, течение жидкостей и газов в живом организме, движение в пространстве частей тела, устойчивость и управляемость движений и другие вопросы, доступные указанным методам

Содержание работы

Введение 2
Движения биокинематических цепей 3
Динамика составных движений 4-5
Энергетика бега 6
Кинематика ходьбы и бега 7-9
Список используемой литературы 10

Файлы: 1 файл

биомеханика Реферат.docx

— 58.93 Кб (Скачать файл)

Содержание.

№стр.

  1. Введение          2
  2. Движения биокинематических цепей     3
  3. Динамика составных движений     4-5
  4. Энергетика бега        6
  5. Кинематика ходьбы и бега      7-9
  6. Список используемой литературы     10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Введение.

Биомеханика движений человека представляет собой одну из частей более общей дисциплины, кратко называемой «биомеханика».

Биомеханика — это раздел биофизики, в котором изучаются механические свойства тканей, органов и систем живого организма и механические явления, сопровождающие процессы жизнедеятельности. Пользуясь методами теоретической и прикладной механики, эта наука исследует деформацию структурных элементов тела, течение жидкостей и газов в живом организме, движение в пространстве частей тела, устойчивость и управляемость движений и другие вопросы, доступные указанным методам. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Учет биомеханических характеристик дает возможность строить предположения о структуре систем, управляющих физиологическими функциями.

До последнего времени основные исследования в области биомеханики были связаны с изучением движений человека и животных. Однако сфера приложения этой науки прогрессивно расширяется; сейчас она включает в себя также изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т. д. Интересные данные получены при изучении эластичного и неэластичного сопротивления грудной клетки, движений газов через дыхательные пути. Предпринимаются попытки обобщенного подхода к анализу движения крови с позиций механики сплошных сред, в частности, изучаются упругие колебания сосудистой стенки.

Доказано также, что с точки зрения механики структура сосудистой системы оптимальна для выполнения своих транспортных функций. Реологические исследования в биомеханике обнаружили специфические деформационные свойства многих тканей тела: экспоненциальную нелинейность связи между напряжениями и деформациями, существенную зависимость от времени и т. д. Полученные знания о деформационных свойствах тканей помогают решению некоторых практических задач, в частности, они используются при создании внутренних протезов (клапаны, искусственное сердце, сосуды и пр.).

 Особенно плодотворно  применяется классическая механика  твердого тела в изучении движений  человека. Часто под биомеханикой  понимают именно это ее приложение.

При изучении движений биомеханика использует данные антропометрии, анатомии, физиологии нервной и мышечной систем и других биологических дисциплин. Поэтому часто, может быть, в учебных целях, в биомеханику ОДА включают его функциональную анатомию, а иногда и физиологию нервно-мышечной системы, называя это объединение кинезиологией.

2.Движения биокинематических цепей.

В зависимости от направления скоростей движения звеньев тела человека могут быть возвратно-вращательными, возвратно-поступательными и круговыми.

Строение сочленений не позволяет совершать движения в суставах по «принципу колеса», т. е. делать неограниченный поворот вокруг оси сустава в одну сторону. Поэтому почти все движения имеют возвратный характер. Возвратно-вращательные движения напоминают движения маятника вокруг оси, расположенной поперек биокинематической цепи (сгибание-разгибание) или продольно (супинация-пронация).

Определенное согласование вращательных движений в различных суставах биокинематической цепи позволяет конечным звеньям двигаться поступательно (кисть боксера при вращательных движениях в плечевом и локтевом суставах; туловище бегуна при отталкивании ногой). Пример возвратно-поступательного движения — работа пилой, напильником. В этих случаях угловые скорости противоположно направленных движений одинаковы (пара скоростей).

Наконец, в шаровидных суставах возможно сложное круговое движение, когда продольная ось звена описывает коническую поверхность. При этом согласуются два движения: самой продольной оси и звена вокруг этой оси. Только такое конусообразное движение и может выполняться без обязательных возвратных движений.

В возвратных движениях имеется критическая точка, в которой происходит смена направления движения (амортизации на отталкивание — в беге, заноса весла на гребковое движение — в гребле, замаха ракеткой на ударное движение — в теннисе). В каждом суставе направления и размах движений ограничены. Значит, звено в суставе может занимать не любое, а лишь анатомически возможное положение. Однако из бесчисленного множества возможных движений только малая часть вызвана потребностями человека и отвечает энергетическим требованиям. Эти движения отобраны и закрепились в человеческой практике, как наиболее рациональные, стали привычными к общеупотребительными.

 

 

 

 

 

 

 

 

 

 

 

 

3.Динамика составных движений

В динамике абсолютно твердого тела действие силы рассматривается как причина изменения движения. Однако, если силы уравновешены, то изменения движения не произойдет. В деформируемом теле возникает при этом деформация и связанное с нею изменение напряжения внутри тела (статическое действие).

Сила, действующая статически, уравновешена другой силой и вызывает не ускорение, а только деформацию тела. Силу, действующую статически, измеряют уравновешивающей ее силой. Если на данное тело М действуют с одинаковыми силами F A и F B два тела А и В, то эти силы взаимно уравновешиваются. Обе силы действуют статически, ускорения нет, скорость тела М не изменяется. Каждая из этих сил (действие имеет равное и противоположное противодействие (реакции R A и R B ). В случае уравновешивания имеются три тела (М, А, В) и два взаимодействия. Следует подчеркнуть, что уравновешиваются F A и F B . Соответствующие действия и противодействия F A и # А , а также F B и R B не уравновешиваются, так как они приложены к разным телам. Как показано на рис. 30, б, силы могут действовать статически в покое (реакция опоры R уравновешивает силу тяжести гимнаста G ), а также в движении, направленном перпендикулярно к уравновешивающей силе (реакция опоры R уравновешивает силу тяжести скользящего конькобежца G ), и в движении по направлению уравновешенной силы (сопротивление воздуха и трение лыж о снег Q уравновешивают при постоянной скорости спуска скатывающую составляющую S силы тяжести лыжника G). Реакция опоры R уравновешивает нормальную составляющую ( N ). Уравновешенная сила независимо от покоя или направления движения сама по себе не изменяет скорости тела.

Во всех случаях уравновешенная сила обусловливает только деформацию того тела, к которому она приложена. Нелишне заметить, что при взаимном уравновешивании статически действуют обе силы.

Сила, действующая динамически, не уравновешена другой силой. Она вызывает ускорение, а также деформацию тела, к которому приложена. Такую силу измеряют по изменению движений тела, к которому она приложена, но при этом обычно не определяют затрат работы на деформацию.

Сила F m , приложенная к телу М), вызовет ускорение, зависящее от массы этого тела. Однако в реальных условиях необходимо учитывать, что всегда существуют другие тела (Земля, среда — воздух, вода и пр.), которые могут оказывать тормозящее действие. Поэтому в принципе и здесь не будет взаимодействия только двух тел. Сила, действующая динамически (действие), вызывает ускорение и деформацию, а также противодействие ускоряемого тела — силу инерции. Зная массу ускоряемого тела и его ускорение под действием динамической силы, определяют ее величину и направление. Силы, приложенные к звеньям тела человека, действуя динамически, приводят к различному результату. В зависимости от того, как направлены силы относительно скорости движущегося тела, различают:

— движущие силы, которые совпадают с направлением скорости (попутные) или образуют с ним острый угол и могут, совершать положительную работу;

— тормозящие силы, которые направлены противоположно направлению скорости (встречные) или образуют с ним тупой угол и могут совершать отрицательную работу;

— отклоняющие силы, перпендикулярные к направлению скорости и увеличивающие кривизну траектории;

— возвращающие силы, также перпендикулярные к направлению движения, но уменьшающие .кривизну траектории.

Обе последние группы сил непосредственно не изменяют величину тангенциальной (касательной) скорости.

От соотношения сил, приложенных к каждому звену тела, зависит и результат их действия.

В материальной системе не действуют аксиомы статики о приложении двух равных и противоположных сил и переносе вектора силы по его направлению. Приложение двух сил или перенос силы вызывает деформацию и изменяет напряжение. Вектор силы в материальной системе не скользящий, а связанный, и поэтому его переносить нельзя. По этой же причине в материальной системе нельзя складывать параллельные силы (тяжести, инерции) и понятия «центр тяжести», «центр инерции» для нее не имеют физического смысла. Однако для расчетов, а также для уяснения характера процессов применяют прием отвердения. Условно считают биомеханическую систему на данный момент времени отвердевшей, превратившейся в одно твердое тело. Тогда можно найти положения ЦМ такими же способами, как центра тяжести твердого тела; можно привести силы к точке; возможен перенос реакции опоры в ЦМ и другие операции. Делаются в биомеханике и иные допущения: множество фактических источников сил сводится к немногим; тело человека рассматривается по редуцированной (сокращенной) схеме (14 или 16 звеньев вместо более 200) и др. Считается, что усилия передаются от одного звена к другому без потерь, в то время как полнота передачи определяется суставной жесткостью, зависящей от мышечных суставных моментов, от напряженности мышц. Делая подобные упрощения, без которых вообще невозможно изучать движения человека, следует ясно понимать характер и степень допущений, чтобы правильно оценивать получаемые результаты.

 

 

 

 

 

 

 

4.Энергетика бега.

Предположим, что бегун передвигается с постоянной скоростью по горизонтальной поверхности. Работа, которая при этом совершается, сводится к преодолению трения и сопротивления воздуха. При беге действие трения невелико, но, тем не менее, бег с постоянной скоростью связан со значительными затратами энергии. Энергия тратится на движение тела бегуна вверх-вниз и на отталкивание ногами от почвы. Кроме того, тело бегуна превращает энергию в теплоту. Дополнительная причина потери энергии заключается в том, что ноги бегуна, масса которых составляет примерно 40\% от массы тела, в процессе бега постоянно ускоряются и тормозятся. Поэтому работа, выполняемая мышцами ног для поддержания движения тела вперед с постоянной скоростью, велика.

В первом приближении можно считать, что работа, выполняемая мышцами бегуна за один шаг, пропорциональна кинетической энергии, сообщаемой той ноге, которая после отталкивания от земли выносится вперед: А ~ mv2 (т — масса ноги). В то же время эта работа определяется формулой А = F∙d, где F — сила мышц, d — расстояние, на котором при каждом шаге мышцы выполняют работу. Считается, что сила мышц (F) пропорциональна квадрату характеристической длины (L2), а масса (т) пропорциональна кубу характеристической длины (L3). Кроме того, расстояние d пропорционально L.

Таким образом, можно считать, что скорость, которую может поддерживать бегун, не зависит от его размеров. Ориентировочные значения скоростей, которые могут развивать человек и некоторые животные, представлены в табл. 5.3.

 

Таблица 5.3 Скорости животных и человека

Объект

Скорость, м/с

Гепард

30

Газель

28

Страус

23

Лисица

20

Заяц

18

Волк

18

Гончая собака

16

Человек

11



 

 

 

 

 

 

 

 

 

 

 

 

Люди — неважные бегуны. Это объясняется тем, что масса ног человека составляет около 40% массы тела и требует значительных затрат энергии при каждом торможении и разгоне. Самые быстроходные животные имеют худые ноги, а основная масса сосредоточена в теле. Большие мышцы ног у некоторых животных (лев, тигр, большие кошки) приспособлены для прыжков, а не для быстрого бега

5.Кинематика ходьбы и бега.

Как и во всех циклических локомоциях, при ходьбе и беге скорость передвижения прямо пропорциональна длине шага и темпу.

Чтобы определить темп ходьбы или бега, обычно регистрируют число шагов в минуту, или частоту шагов (Так же поступают и в конькобежном спорте. Но в плавании, гребле и велоспорте определяют темп как число циклов в минуту, а длиной шага считают расстояние, преодолеваемое за один цикл. В велоспорте это расстояние называется укладкой).

Одна и та же скорость может быть достигнута при разных сочетаниях длины и частоты шагов. Кривая, все точки которой соответствуют одной и той же скорости, называется изоспидой. Считают, что увеличить скорость можно тремя способами: повысив длину шага, подняв темп и увеличив одновременно и длину, и частоту шагов.

Информация о работе Движения биокинематических цепей