Автор работы: Пользователь скрыл имя, 10 Января 2014 в 19:36, доклад
Алгори́тм — набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Это связано с тем, что работа каких-то инструкций алгоритма может быть зависима от других инструкций или результатов их работы. Таким образом, некоторые инструкции должны выполняться строго после завершения работы инструкций, от которых они зависят. Независимые инструкции или инструкции, ставшие независимыми из-за завершения работы инструкций, от которых они зависят, могут выполняться в произвольном порядке, параллельно или одновременно, если это позволяют используемые процессор и операционная система.
Алгори́тм — набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Это связано с тем, что работа каких-то инструкций алгоритма может быть зависима от других инструкций или результатов их работы. Таким образом, некоторые инструкции должны выполняться строго после завершения работы инструкций, от которых они зависят. Независимые инструкции или инструкции, ставшие независимыми из-за завершения работы инструкций, от которых они зависят, могут выполняться в произвольном порядке, параллельно или одновременно, если это позволяют используемые процессор и операционная система.
Ранее часто писали «алгорифм», сейчас такое написание используется редко, но, тем не менее, имеет место (например, Нормальный алгорифм Маркова).
Часто в качестве
исполнителя выступает
Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако, в явном виде понятие алгоритма сформировалось лишь в начале XX века.
Частичная формализация
понятия алгоритма началась с попыток
решения проблемы разрешения (нем. Entscheidungs
Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:
Особую роль выполняют прикладные алгоритмы, предназначенные для решения определённых прикладных задач. Алгоритм считается правильным, если он отвечает требованиям задачи (например, даёт физически правдоподобный результат). Алгоритм (программа) содержит ошибки, если для некоторых исходных данных он даёт неправильные результаты, сбои, отказы или не даёт никаких результатов вообще. Последний тезис используется в олимпиадах по алгоритмическому программированию, чтобы оценить составленные участниками программы.
Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:
• Механические алгоритмы, или иначе детерминированные, жестк
• Гибкие алгоритмы, например стохастические, то есть вероятностные и эвристические.
• Вероятностный (
• Эвристический алгоритм (от греческого слова «эврика») — алгоритм, использующий различные разумные соображения без строгих обоснований[11].
• Линейный алгоритм — набор команд (указаний), выполняемых последовательно во времени друг за другом.
• Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько параллельных ветвей алгоритма.
• Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы — последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.
• Вспомогательный (подчиненный
• Структурная блок-схема, граф-схема алгоритма — графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков — графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия. Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, так как зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.
Можно встретить даже такое утверждение: "Внешне алгоритм представляет собой схему — набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации ".
Нумерация алгоритмов играет важную роль в их исследовании и анализе. Поскольку любой алгоритм можно задать в виде конечного слова (представить в виде конечной последовательности символов некоторого алфавита), а множество всех конечных слов в конечном алфавите счётное, то множество всех алгоритмов также счётное. Это означает существование взаимно однозначного отображения между множеством натуральных чисел и множеством алгоритмов, то есть возможность присвоить каждому алгоритму номер.
Нумерация алгоритмов является одновременно и нумерацией всех алгоритмически исчисляемых функций, причем любая функция может иметь бесконечное количество номеров.
Существование нумерации позволяет работать с алгоритмами так же, как с числами. Особенно полезна нумерация в исследовании алгоритмов, работающих с другими алгоритмами.
Формализация
понятия алгоритма позволила
исследовать существование зада
Случай, когда результатом вычисления функции является логическое выражение «истина» или «ложь» (или множество {0, 1}), называют задачей, которая может быть решаемой или нерешаемой в зависимости от вычислимости функции [13].
Важно точно указывать допустимое множество входных данных, поскольку задача может быть решаемой для одного множества и нерешаемой для другого.
Одной из первых задач, для которой была доказана нерешаемость, является проблема остановки. Формулируется она следующим образом:
Имея описание программы для машины Тьюринга, требуется определить, завершит ли работу программа за конечное время или будет работать бесконечно, получив некоторые входные данные. |
Доказательство неразрешимости проблемы остановки важно тем, что к ней можно свести другие задачи. Например, простую проблему остановки можно свести к задаче остановки на пустой строке (когда нужно определить для заданной машины Тьюринга, остановится ли она, будучи запущенной на пустой строке), доказав тем самым неразрешимость последней.[13].
Вместе с распространением информационных технологий увеличился риск программных сбоев. Одним из способов избежания ошибок в алгоритмах и их реализациях служат доказательства корректности систем математическими средствами.
Использование математического аппарата для анализа алгоритмов и их реализаций называют формальными методами. Формальные методы предусматривают применение формальных спецификаций и, обычно, набора инструментов для синтаксического анализа и доказательства свойств спецификаций. Абстрагирование от деталей реализации позволяет установить свойства системы независимо от ее реализации. Кроме того, точность и однозначность математических утверждений позволяет избежать многозначности и неточности естественных языков[15].
По гипотезе Ричарда Мейса, «избежание ошибок лучше устранения ошибок»[16]. По гипотезе Хоара, «доказательство программ решает проблему корректности, документации и совместимости». Доказательство корректности программ позволяет выявлять их свойства по отношению ко всему диапазону входных данных. Для этого понятие корректности было разделено на два типа:
Во время
доказательства корректности сравнивают
текст программы со спецификацией
желаемого соотношения входных-
P{Q}R
где P — это предусловие, что должно выполняться перед запуском программы Q, а R — постусловие, правильное после завершения работы программы.
Формальные методы были успешно применены для широкого круга задач, в частности: разработке электронных схем, искусственного интеллекта, автоматических систем на железной дороге, верификации микропроцессоров, спецификации стандартов и спецификации и верификации программ[18].