Контрольная работа по "Логистике"

Автор работы: Пользователь скрыл имя, 22 Декабря 2012 в 12:20, задача

Описание работы

Работа содержит решение транспортной задачи средствами табличного процесса Excel
Задача: Четыре растворных узла поставляют раствор четырем строительных фирмам. Для перевозки раствора используются однотипные автомашины. Объем производства растворных узлов в день равен 30, 20, 40, 50 т. Потребности строительных фирм в день: 35, 20, 55, 30 т. Рсстояние в километрах от растворных узлов до сторительных объектов указано в таблице.

Файлы: 1 файл

Doc1.docx

— 1.21 Мб (Скачать файл)

Решение транспортной задачи средствами табличного процесса Excel (2007)

 

Задача

Четыре растворных узла поставляют раствор четырем строительных фирмам. Для перевозки раствора используются однотипные автомашины. Объем производства растворных узлов в день равен 30, 20, 40, 50 т. Потребности строительных фирм в день: 35, 20, 55, 30 т. Рсстояние в километрах от растворных узлов до сторительных объектов указано в таблице.

 

Исходные данные

Растворный узел

Строительные фирмы

ЗАПАСЫ

1

2

3

4

I

2

4

1

3

30

II

5

6

3

4

20

III

3

6

7

5

40

IV

1

2

9

3

50

ПОТРЕБНОСТЬ

35

20

55

30

 

830

         

 

Определить, в каком объеме, с каких растворных узлов и  куда должен доставляться раствор, чтобы  транспортные издержки по его доставке автотранспортом были минимальными.

 

Решение:

Создаем матрицу перевозок, которая имеет изменяемые ячейки В2:Е5. После проведения расчетов на ее месте будет записан оптимальный  план перевозок. По каждой строке и  столбцу матрицы перевозок записываем соответствующую форму:

 

,                             

 

 

В ячейки А15: F14 введем исходные данные задачи, а в ячейке А16 запишем значение целевой функции, используя функцию =СУММПРОИЗВ(B2:E5;B11:E14).

Тем самым получим матрицы, как показано на рисунки 1.

 

 

Рисунок 1- Исходная матрица

 

Устанавливаем курсор на ячейку А16, в которой записано значение целевой функции, и вызываем операцию ДанныеАнализПоиск решения в поле выбрать Установить целевую функцию следует внести адрес ячейки А16, в которой записано значение целевой функции (рисунки 2,3) .

 

 

Рисунок 2

 

Так как решается задача на минимум, то следует установить, что целевая функция будет  равной минимальному значению. После  этого следует добавить ограничения, нажав на клавишу Добавить. На экране будет выдано окно «Добавить ограничения». Перед тем как выполнить решение задачи, которое проводится в том же окне «Поиск решения», следует выполнить некоторые назначения, нажав на клавишу Параметры и установить флажок Неотрицательные значения и флажок Линейная модель (рисунки 3,4).

 

 

Рисунок 3

 

Рисунок 4

После проведения всех необходимых  установок надо нажать клавишу ОК, что приведет к возврату на окно «Поиск решения». В этом окне нажать на клавишу Выполнить, после чего на рабочем поле будет выдан оптимальный план поставок, а в ячейке А15 будет выдан результат целевой функции для данной задачи, равен 204. (рисунки 5,6).

 

 

Рисунок 5

 

 

Рисунок 6

 

 

Получаем, что I растворный узел 20т раствора должен доставить 1-ой фирме, 10 т раствора 4-ой фирме.

II - растворный узел должен доставить 20 т раствора 4-ой фирме.

III – растворный узел должен доставить 40т раствора 3-ей фирме.

IV – растворный узел должен  15т раствора 1-ой фирме, 10 т раствора 2-ой фирме, 15 т раствора 3-ей фирме.

 

 

 


Информация о работе Контрольная работа по "Логистике"