Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 21:00, контрольная работа
ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН
Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины.
Разные единицы одной и той же величины отличаются друг от друга своим размером. Так, размер килограмма в тысячу раз больше размера грамма, размер минуты в шестьдесят раз больше размера секунды. Единицу физической величины можно выбрать произвольно, независимо от других единиц. Например, единица длины - метр, единица массы килограмм, единица температуры - градус и т.д.
Для того, чтобы обосновать возможность количественного представления, то есть измерения величин различных групп, необходимо остановиться на еще одном метрологическом понятии — измерительном преобразовании. Это такой вид преобразования, при котором устанавливается взаимно-однозначное соответствие между размерами величин, сохраняющее для некоторого множества размеров преобразуемой величины все определенные для нее отношения и операции. В большинстве случаев измерительные преобразования могут быть осуществлены техническими устройствами, называемыми преобразователями. Преобразуемая величина называется тогда входной, а результат преобразования — выходной величиной. Множество размеров входной величины, подвергаемой преобразованию с помощью данного преобразователя, называется диапазоном преобразования.
Операции сложения и умножения на целое число размеров величин третьей группы и интервалов размеров величин второй группы позволяют проверить (теоретически и экспериментально) линейность преобразования их друг в друга.
Измерительное преобразование называется линейным, если при увеличении преобразуемой величины Q на ΔQ результат преобразования — величина R — увеличивается (или уменьшается) на ΔR, а при увеличении ΔQ в n раз ΔR увеличивается также в n раз и ΔQ и n таковы, что Q и Q + n ΔQ лежат в диапазоне преобразований. Очевидно, что линейность преобразований, в которых участвуют величины первой группы, проверить нельзя. Все же остальные величины могут быть переведены друг в друга линейными измерительными преобразованиями.
Поскольку в уравнения физики входят только величины третьей группы и интервалы величин второй группы, то в дальнейшем будем рассматривать только их.
Широкое распространение получило следующее определение измерения: измерение — познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения. В последние годы вокруг этого определения развернулась определенная дискуссия, однако все возражения не опровергают смысл приведенного определения. В большинстве стандартов приводится более лаконичное определение, содержащее ту же мысль: измерение — нахождение значения физической величины опытным путем с помощью специальных технических средств.
По способу получения числового значения измеряемой величины все измерения делят на четыре основных вида: прямые, косвенные, совокупные и совместные.
Прямыми называют измерения, заключающиеся в экспериментальном сравнении измеряемой величины с мерой этой величины или в отсчете показаний средства измерений, непосредственно дающего значение измеряемой величины. Простейшими примерами прямых измерений являются измерения длины линейкой, температуры — термометром, объема жидкости — мерником, электрического напряжения — вольтметром и так далее. Прямые измерения — основа более сложных видов измерений.
Косвенными называют измерения, результат которых определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Например, объем прямоугольного параллелепипеда можно определить по результатам прямых измерений длины в трех взаимно перпендикулярных направлениях; электрическое сопротивление — по результатам измерений падения напряжения и силы тока и тому подобное.
Находить значения некоторых величин легче и проще путем косвенных измерений, чем путем прямых. Иногда прямые измерения практически невозможно осуществить. Нельзя, например, измерить плотность твердого тела, определяемого обычно по результатам косвенных измерений объема и массы. Косвенные измерения некоторых величин позволяют получить значительно более точные результаты, чем прямые измерения.
Совокупными называют измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Результаты совокупных измерений находят путем решения системы уравнений, составляемых по результатам нескольких прямых измерений. Например, совокупными являются измерения, при которых массы отдельных гирь набора находят по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь.
Совместными называют производимые одновременно (прямые или косвенные) измерения двух или нескольких неодноименных величин. Целью совместных измерений по существу является нахождение функциональной зависимости между величинами, например, зависимости длины тела от температуры, зависимости электрического сопротивления проводника от давления и тому подобное.
Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Это достигается путем точного воспроизведения и хранения установленных единиц физических величин и передачи их размеров применяемым средствам измерений. Воспроизведение, хранение и передача размеров единиц осуществляется с помощью эталонов и образцовых средств измерений. Высшим звеном в метрологической цепи передачи размеров единиц измерений являются эталоны.
Эталон представляет собой средство измерений (или комплекс средств измерений), обеспечивающее воспроизведение и хранение единицы физической величины (или одну из этих функций) с целью передачи размера единицы образцовым, а от них рабочим средствам измерений и утвержденное в качестве эталона в установленном порядке.
Если эталон воспроизводит единицу с наивысшей в стране точностью, он называется первичным. Первичные эталоны основных единиц воспроизводят единицу в соответствии с ее определением. Примером первичного эталона является комплекс средств измерений для воспроизведения метра в длинах световых волн излучения криптона-86.
Для воспроизведения единиц в особых условиях, в которых прямая передача размера единицы от существующих эталонов технически неосуществима с требуемой точностью (высокие и сверхвысокие частоты, энергии, давления, температуры, особые состояния вещества, крайние участки диапазонов измерений и тому подобное), создаются и утверждаются специальные эталоны. Специальный эталон воспроизводит единицу в особых условиях и заменяет в этих условиях первичный эталон. Примером специального эталона является эталон мощности электромагнитных волн при частотах 2,6 ... 37,5 ГГц в волноводных трактах.
Первичный, или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным. Государственные эталоны утверждаются Госстандартом РФ, и на каждый из них утверждается государственный стандарт. Основное назначение эталонов — служить материально-технической базой воспроизведения и хранения единиц физических величин. Принят принцип систематизации эталонов по воспроизводимым единицам.
Основные единицы Международной системы единиц (СИ) должны воспроизводиться с помощью государственных эталонов, то есть централизованно. Дополнительные, производные, а при необходимости и внесистемные единицы исходя из соображений технико-экономической целесообразности воспроизводятся одним из двух способов:
Централизованно воспроизводится большинство важнейших производных единиц СИ (ньютон, джоуль, паскаль, ом, вольт, генри, вебер и другие), а децентрализованно — производные единицы, размер которых не может передаваться прямым сравнением с эталоном (например, единицы площади) или, если поверка мер посредством косвенных измерений проще, чем их сравнение с эталоном, и обеспечивает необходимую точность (например, меры вместимости и объема). При этом, когда для воспроизведения единицы необходимо специально предназначенное оборудование, создаются поверочные установки повышенной точности. Примером такой поверочной установки проливная поверочная установка для счетчиков жидкости, сравнивающая объем воды, протекающей через поверяемый счетчик, и объем воды, определенный взвешиванием этого же объема на эталонных весах и скорректированный по температуре жидкости.
В метрологической практике широко распространены вторичные эталоны, значения которых устанавливаются по первичным эталонам. Вторичные эталоны являются частью подчиненных средств хранения единиц и передачи их размера. Они создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ и для обеспечения сохранности и наименьшего износа государственного эталона. В качестве примеров вторичного эталона можно привести эталон-копию единицы массы килограмма в виде платино-иридиевой гири № 26 и рабочий эталон килограмма, изготовленный из нержавеющей стали.
По своему метрологическому назначению вторичные эталоны делятся на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.
Эталон-копия представляет собой вторичный эталон, предназначенный для хранения единицы и передачи ее размера рабочим эталонам. Он не всегда может быть физической копией государственного эталона.
Эталон сравнения — вторичный эталон, применяемый для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом. Примером эталона сравнения может служить группа нормальных элементов, применяемая для сличения государственного эталона вольта России с эталоном вольта Международного бюро мер и весов.
Эталон-свидетель — вторичный эталон, применяемый для проверки сохранности государственного эталона и для замены его в случае порчи или утраты. Эталон-свидетель применяется лишь тогда, когда государственный эталон является невоспроизводимым.
Рабочий эталон — вторичный эталон, применяемый для хранения единицы и передачи ее размера образцовым средствам измерений высшей точности и при необходимости — наиболее точным рабочим мерам и измерительным приборам.
Государственные эталоны всегда осуществляются в виде комплекса средств измерений и вспомогательных устройств, обеспечивающих воспроизведение единицы и в необходимых случаях ее хранение, а также передачу размера единицы вторичным эталонам. Вторичные же эталоны могут осуществляться в виде: а) комплекса средств измерений; б) одиночных эталонов; в) групповых эталонов; г) эталонных наборов.
Одиночный эталон состоит из одной меры, одного измерительного прибора или одной измерительной установки, обеспечивающих воспроизведение или хранение единицы самостоятельно без участия других средств измерений того же типа. Примерами одиночного эталона являются вторичные эталоны единиц массы — килограмма в виде платино-иридиевой и стальной гирь.
Групповой эталон состоит из совокупности однотипных мер, измерительных приборов или других средств измерений, применяемых как единое целое для повышения надежности хранения единицы. Примером группового эталона служит эталон-копия вольта, представляющий собой группу из 20 нормальных элементов. Размер единицы, хранимой групповым эталоном, определяется как среднее арифметическое их значений, воспроизводимых отдельными мерами и измерительными приборами, входящими в состав группового эталона. Отдельные меры и измерительные приборы, входящие в групповой эталон, применяют в качестве одиночных рабочих эталонов, если это допустимо по условиям хранения единицы. Групповые эталоны могут быть постоянного и переменного составов. В групповые эталоны переменного состава входят меры и измерительные приборы, периодически заменяемые новыми.
Эталонный набор представляет собой набор мер или измерительных приборов, позволяющий хранить единицу или измерять величину в определенных пределах. Эти меры или измерительные приборы предназначены для различных значений или различных областей значений измеряемой величины. Примером эталонного набора является рабочий эталон единицы плотности жидкости в виде набора денсиметров, служащих для определения плотности жидкостей в различных участках диапазона. Подобно групповым эталонам эталонные наборы могут быть постоянного и переменного состава.
Государственные эталоны хранятся в метрологических институтах. Для проведения работ с государственными эталонами назначаются особые ответственные лица — ученые хранители эталонов. Вторичные эталоны используются в метрологических институтах и в других крупных органах Государственной метрологической службы.
Кроме национальных эталонов единиц физических величин существуют международные эталоны, хранимые в Международном бюро мер и весов. Программой деятельности Международного бюро предусмотрены систематические международные сличения национальных эталонов крупнейших метрологических лабораторий разных стран с международными эталонами и между собой. Эталоны метра и килограмма сличают раз в 25 лет, электрические и световые эталоны (вольта и ома, канделы и люмен) — раз в 3 года. Проводят также эпизодические международные сличения эталонов радия, других источников ионизирующих излучений, платиновых термометров сопротивления, температурных ламп и других.
Единицы величин начали появляться с того момента, когда у человека возникла необходимость выражать что-либо количественно. Это «что-то» могло быть числом предметов. В этом случае измерение было предельно простым, так как заключалось в счете предметов, а единицей был один предмет или одна штука. Но дальше задача усложнилась, так как возникла необходимость определять количество таких объектов, которые не поддавались штучному счету — жидкостей, сыпучих тел и тому подобное. Появились меры объема. Эти меры были одновременно и единицами объема при измерении. Потребность измерения длины вызвала появление мер длины. Первыми мерами длины были части тела человека: пядь, ступня, локоть, шаг. Эти меры были одновременно и единицами длины.
Массу вещества определяли по его весу. Различие между массой и весом определили тогда, когда обнаружили, что в разных точках земного шара вес одной и той же массы неодинаков и зависит от силы земного притяжения.
Кроме количественного определения свойств тел и веществ, возникла необходимость количественно характеризовать т процессы. Так появилась необходимость определять время. Первой единицей были сутки - смена дня и ночи.