Автор работы: Пользователь скрыл имя, 12 Марта 2015 в 12:19, контрольная работа
Ощущение зрения происходит под воздействием видимого излучения (света), которое представляет собой электромагнитное излучение с длиной волны 0,38...0,76 мкм. Чувствительность зрения максимальна к электромагнитному излучению с длиной волны 0,555 мкм (желто-зеленый цвет) и уменьшается к границам видимого спектра.
1.Освещение: светотехнические характеристики; системы и виды, требования. Влияние освещения на работоспособность человека и безопасность труда. 3
2. Идентификация энергетических воздействий технических систем. 7
3.Стихийные явления и бедствия: причины возникновения, характеристика, последствия. 10
4.Ответственность технических работников за нарушение законодательства по БЖД. 11
5.Безопасность при водных и ледовых переправах. 13
6.Переносные индикаторы и автоматические сигнализаторы напряжения. 15
7.Задание 166. 16
Список литературы. 17
СОДЕРЖАНИЕ
1.Освещение:
светотехнические
2.
Идентификация энергетических
3.Стихийные
явления и бедствия: причины возникновения,
характеристика, последствия.
4.Ответственность
технических работников за
5.Безопасность
при водных и ледовых
6.Переносные индикаторы и автоматические сигнализаторы напряжения. 15
7.Задание 166.
Список литературы. 17
1.Освещение: светотехнические характеристики; системы и виды, требования. Влияние освещения на работоспособность человека и безопасность труда.
Ощущение зрения происходит под воздействием видимого излучения (света), которое представляет собой электромагнитное излучение с длиной волны 0,38...0,76 мкм. Чувствительность зрения максимальна к электромагнитному излучению с длиной волны 0,555 мкм (желто-зеленый цвет) и уменьшается к границам видимого спектра.
Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:
- световой поток Ф – часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм);
- сила света J – пространственная плотность светового потока; определяется как отношение светового потока dф, исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла dΩ, к величине этого угла; J== dф/dΩ ; измеряется в канделах (кд);
- освещенность Е – поверхностная плотность светового потока; определяется как отношение светового потока dф, равномерно падающего на освещаемую поверхность dS (м2), к ее площади: Е=dф/dS, измеряется в люксах (лк);
- яркость L поверхности под углом α к нормали –это отношение силы света dJα, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади dS проекции этой поверхности, на плоскость, перпендикулярную к этому направлению: L = dф/(dScosα), измеряется в кд • м-2.
Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности, показатель освещенности, спектральный состав света.
Фон – это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Эта способность (коэффициент отражения р) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Фпад; р == Фот/Фпад. В зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,02...0,95; при р >0,4 фон считается светлым; при р = 0,2...0,4–средним и при р <0,2–темным.
Контраст объекта с фоном k – степень различения объекта и фона –характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знаки, пятна, трещины, риски или других элементов) и фона; k = (Lop–Lo)/Lop считается большим, если k>0,5 (объект резко выделяется на фоне), средним при k==0,2...0,5 (объект и фон заметно отличаются по яркости) и малым при k<0,2 (объект слабо заметен на фоне).
Коэффициент пульсации освещенности kЕ–это критерий глубины колебаний освещенности в результате изменения во времени светового потока
KЕ=100(Emax-Emin)/(2Eср);
где Emax, Emin Ecp – максимальное, минимальное и среднее значения освещенности за период колебаний; для газоразрядных ламп kе = 25...65 %, для обычныхламп накаливания kE≈7 %, для галогенных ламп накаливания KE= 1%.
Показатель ослепленности Ро – критерий оценки слепящего действия, создаваемого осветительной установкой,
Po=1000(V1/V2-1),
где V1 и V2 –видимость объекта различения соответственно при экранировании и наличии ярких источников света в поле зрения.
Экранирование источников света осуществляется с помощью щитков, козырьков и т.п.
Видимость V характеризует способность глаза воспринимать объект. Она зависит от освещенности, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции. Видимость определяется числом пороговых контрастов в контрасте объекта с фоном, т.е. V=k/kпop, где kпор –пороговый или наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличим на этом фоне.
Конструктивно естественное освещение подразделяют на боковое (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее –через аэрационные и зенитные фонари, проемы в кровле и перекрытиях; комбинированное – сочетание верхнего и бокового освещения.
Искусственное освещение по конструктивному исполнению может быть двух видов – общее и комбинированное. Систему общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цехи), а также в административных, конторских и складских помещениях. Различают общее равномерное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализованное освещение (с учетом расположения рабочих мест).
По функциональному назначению искусственное освещение подразделяют на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, эритемным, бактерицидным и др.
Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.
Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, нарушение технологического процесса и т.д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5 % нормируемой освещенности рабочего освещения, но не менее 2 лк.
Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производственных помещений, в которых работают более 50 чел. Минимальная освещенность на полу основных проходов и на ступеньках при эвакуационном освещении должна быть не менее 0,5 лк, на открытых территориях – не менее 0,2 лк.
Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время 0,5 лк.
Сигнальное освещение применяют для фиксации границ опасных зон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.
Производственное освещение должно обеспечивать отсутствие в поле зрения работающего резких теней. Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утомляемость, снижает производительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими молочными стеклами, при естественном освещении, используя солнцезащитные устройства (жалюзи, козырьки и др.).
Колебания освещенности на рабочем месте, вызванные, например, резким изменением напряжения в сети, обусловливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны быть причиной возникновения взрыва или пожара.
2. Идентификация энергетических воздействий технических систем.
При идентификации энергетических воздействий следует исходить из условия, что наибольшая интенсивность потока энергии всегда существует непосредственно около источника. Интенсивность потока энергии в среде обитания уменьшается обратно пропорционально площади, на которую распределяется энергия, т.е. величине r2, где r - расстояние от источника излучения до рассматриваемой (расчетной) точки в среде обитания. Если источник, излучающий энергию, находится на земной поверхности, то излучение идет в полусферическое пространство (S = 2пr2), если же источник расположен высоко над земной поверхностью или под ней, то излучаемая энергия рассеивается по сферической поверхности (S = 4пr2).
Расчет амплитуд вертикальных (горизонтальных) колебаний грунта при вертикальных (горизонтальных) вибрациях фундамента машин с динамическими нагрузками производят по формуле
где Аr — амплитуда колебаний грунта в точках, расположенных на расстоянии г от оси фундамента, являющегося источником волн в грунте; Ao - амплитуда свободных или вынужденных колебаний при - приведенный радиус подошвы фундамента (основания). Частоту волн, распространяющихся в грунте, принимают равной частоте колебаний фундамента машины.
Протяженность зоны воздействия вибраций определяется величиной их затухания в грунте, которая, как правило, составляет 1 дБ/м (в водонасыщенных грунтах оно несколько выше). Чаще всего на расстоянии 50...60 м от магистралей рельсового транспорта вибрации затухают. Зоны действия вибраций около строительных площадок, кузнечно-прессовых цехов, оснащенных молотами с облегченными фундаментами, значительно больше и могут иметь радиус до 150... 200 м. Значительно выше вибрации в жилых зданиях могут создавать расположенные в них технические устройства (насосы, лифты, трансформаторы и т. п.), а также трассы метрополитена неглубокого залегания. 3 Интенсивность звука I (Вт/м2) в расчетной точке окружающей среды при излучении шума источником со звуковой мощностью Р (Вт) рассчитывают по формуле
где Ф – фактор направленности излучения шума; 5 – площадь, на которую распределяется звуковая энергия, м2; k – коэффициент, учитывающий уменьшение интенсивности звука на пути его распространения за счет затухания в воздухе и на различных препятствиях; k = 1 при отсутствии препятствий и при расстояниях до 50 м.
Значительные уровни звука и зоны воздействия шума возникают при эксплуатации средств транспорта:
Шумовая характеристика железнодорожного транспорта оценивается величиной уровня шума Iэкв (дБА), определяемой по формуле
где vr – скорость состава, м/с; vо = 1 м/с.
Расчетные размеры санитарно-защитных зон (СЗЗ) (под СЗЗ понимается зона, в которой превышаются установленные нормативами уровни вредного фактора) по фактору шума для многих промышленных предприятий существенно превышают установленные санитарными нормами размеры СЗЗ по фактору вредных выбросов.
Электромагнитное поле несет энергию, определяемую плотностью потока энергии
I= ЕН, Вт/м2. При излучении сферических электромагнитных волн плотность потока энергии в зависимости от расстояния от источника определяется по формуле
где Рист – мощность, подводимая к источнику, Вт; r – расстояние от источника электромагнитного поля (ЭМП) до расчетной точки, м. Формула справедлива при условии, что , где - длина волны электромагнитного излучения, м. Длина волны связана с частотой f, Гц, соотношением где с — скорость распространения электромагнитных волн, м/с.
Опасные зоны источников ЭМП и излучений составляют: - для линий электропередач (ЛЭП) с частотой 0 и 50 Гц в зависимости от напряжения:
Напряжение, кВ ..............................
Размер защитной зоны от крайнего
провода ЛЭП, м ..........……………….10 20 75 250 300
— для электрифицированных железных дорог при напряжении 10...20 кВ защитная зона соответственно 10 и 20 м;
— для источников радиочастот СВЧ (f = 3 х 108 : 3 х 1011 Гц) защитная зона составляет 300 м.
3.Стихийные явления и бедствия: причины возникновения, характеристика, последствия.
Стихийные бедствия - это опасные природные явления геофизического, геологического, атмосферного или биосферного происхождения, которые характеризуются внезапным нарушением жизнедеятельности населения, разрушениями, уничтожением материальных ценностей, травмами и жертвами среди людей. Такие явления могут служить причиной многочисленных аварий и катастроф, появления вторичных поражающих факторов. Перечень основных видов стихийных бедствий представлен в табл.
Таблица 1 Перечень основных видов стихийных бедствий
Стихийное бедствие |
Основной критерий |
Поражающий фактор и последствия |
Землетрясение |
Сила, или интенсивность, до 12 баллов |
Сотрясение грунта, трещины, пожары, взрывы, разрушения, человеческие жертвы |
Сель, оползень |
Масса, скорость потока |
Камнегрязевой поток, человеческие жертвы, уничтожение материальных ценностей • |
Пожар |
Температура |
Тепловое воздействие, жертвы, материальный ущерб |
Сильный ветер (ураган, смерч) |
Скорость ветра |
Скоростной напор, человеческие жертвы, уничтожение материальных ценностей |
Обледенение, снегопад |
Количество осадков более 20 мм за 12 ч |
Уровень заноса, обрывы проводов, поражение людей, человеческие жертвы |
Пыльная буря |
Скорость ветра |
Скоростной напор, уничтожение посевов, плодородных почв |
Наводнение |
Подъем уровня воды |
Затопление суши, разрушения, человеческие жертвы |
Циклон, тайфун |
Скорость ветра |
Затопление суши, разрушения, человеческие жертвы |
Цунами |
Высота и скорость волны |
Затопление суши, разрушения, человеческие жертвы |
Информация о работе Контрольная работа по "Безопасности жизнедеятельности"