Автор работы: Пользователь скрыл имя, 28 Апреля 2013 в 14:39, дипломная работа
В своих работах Арнхейм обращался к самым разнообразным проблемам, к самым различным аспектам изучения искусства. Ему принадлежат исследования по проблемам кино, поэзии, архитектуры, скульптуры и даже хореографии. В его работах большое внимание уделяется проблемам эстетики, истории искусства и художественной критики. Но основная, ведущая тема исследований Арнхейма — проблемы психологии искусства. С этими проблемами связана вся творческая биография ученого.
Модель зрительной области мозга
До сих пор я пользовался понятием фронтальной (двухмерной) модели как основным. Я пытался ответить на вопрос, какими свойствами должна обладать такая модель для того, чтобы воспринималась тенденция в трехмерном пространстве к наклонному положению. Данный метод служит для определения того, какие разновидности изобразительных фигур на рисунке или картине создают этот эффект. Однако было бы ошибочным предполагать, что в психофизиологических процессах восприятия двухмерная модель имеет подобный же приоритет. И все-таки это делается очень часто по следующей причине. Независимо от того, является ли предмет физически плоским или объемным, расположенным перпендикулярно или наклонно, когда мы смотрим на него, восприятие всегда базируется на зрительных образах этого объекта, спроецированных с помощью глазного хрусталика на сетчатку глаза. Сетчатка глаза представляет собой двухмерную поверхность, но не горизонтальную плоскость, потому что она является частью внутренней поверхности глазного яблока и, следовательно, ее поверхность носит шарообразный характер, а не плоскостный. Но тем не менее это все-таки поверхность, и все зрительные образы, отражаемые на сетчатке глаза, являются двухмерными, подобно картине, нарисованной на дне чаши. Поэтому можно часто услышать высказывание, что любое зрительное восприятие начинается с двухмерных проекций. Подобное представление является неверным. На форму образа, запечатленного на сетчатке глаза, оказывается влияние только в том случае, если процессы возбуждения, которые протекают внутри поверхности, находятся во взаимодействии друг с другом. Эту мысль можно проиллюстрировать следующей аналогией. Представьте себе целый ряд телефонных будок, в каждой из которых разговаривает человек. Если пространственная близость будок будет способствовать взаимному наложению разговоров, так что каждый абонент на противоположном конце провода услышит беспорядочную смесь всех шести сообщений, то в этом случае действительно следует серьезно поразмыслить над изменением пространственного расположения телефонных будок. Но так как подобного наложения разговоров не происходит, то разница между тем, располагаются ли телефонные будки близко друг к другу по прямой линии или по кривой или они находятся друг от друга на расстоянии целой мили, является несущественной. Это, насколько нам известно, является компетенцией ретинальных рецепторов — палочек и колбочек. Каждый из этих небольших одиночных рецепторов или группы рецепторов независимо, возбуждается одной точкой зрительного образа. Предприняв дробление этой визуальной информации, ретинальный рецептор становится не чем иным, как транзитной станцией, на которой свет превращается в нервные импульсы. Однако то, что все эти станции-преобразователи располагаются на общей поверхности, и то, какую форму имеет эта поверхность, не оказывает какого-либо воздействия на пространственные размеры получившегося в итоге восприятия.
Можно допустить,
что взаимодействие в этом
пространстве как целом
Мы обрисовали визуальную область коры головного мозга как область трехмерного пространства, в котором возбуждения, как только они возникают, становятся изолированными и в принципе свободны принимать любую пространственную конфигурацию — плоскую или имеющую объем, фронтальную или расположенную наклонно. Какой-либо приоритет здесь отсутствует. Однако возбуждения будут ограничены в своей свободе одним важным обстоятельством: они не могут отклоняться от проективной модели, образованной на сетчатке глаза. Чтобы проиллюстрировать это положение, я прибегну к искусному инструменту, при помощи которого китайцы производят арифметические действия и который представляет собой каркас из параллельно натянутых проволок с1 нанизанными на нихбусами, то есть счеты. Рискуя быть занесенным в черные списки любым почтенным психологом, я буду воображать теперь визуальную области коры головного мозга как трехмерные счеты, на которых возбуждения представлены в виде бусинок. На рис. 159 показанастимулирующая модель четырьмя точками. Посредством проективной модели, образованной на сетчатке глаза, точки в нашем расположены таким образом, что образуют во фронтальной плоскости квадрат. Но в принципе это необязательно должно быть квадратом. Четыре бусинки могут беспрепятственно скользить вдоль своих проволочек, образуя в любой из бесчисленного числа плоскостей какую-нибудь четырехстороннюю фигуру. Или же вообще они могут не находиться в общей плоскости.
Все, что было здесь сказано о плоскост