Автор работы: Пользователь скрыл имя, 15 Июня 2012 в 22:14, реферат
Большинство научных трактатов индийцев написаны на санскрите — языке религиозных книг брахманов. Этот язык объединял многочисленные народы Индии, говорившие на различных языках. Только в XVII в. индийцы стали писать научные трактаты на разговорных языках: анонимный южно-индийский трактат «Йукти бхаша» («Разъяснение математики») написан на языке малайялам, а астрономические таблицы Савай Джай Сингха — на распространенном в Северной Индии персидском языке.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное
государственное бюджетное
высшего профессионального образования
«Стерлитамакская государственная педагогическая академия
им. Зайнаб
Биишевой»
Физико
– математический факультет
Реферат
Индусская
математика
Стерлитамак 2012
Математика
в древней и
средневековой Индии
Большинство научных трактатов индийцев написаны на санскрите — языке религиозных книг брахманов. Этот язык объединял многочисленные народы Индии, говорившие на различных языках. Только в XVII в. индийцы стали писать научные трактаты на разговорных языках: анонимный южно-индийский трактат «Йукти бхаша» («Разъяснение математики») написан на языке малайялам, а астрономические таблицы Савай Джай Сингха — на распространенном в Северной Индии персидском языке.
Следует отметить, что наши сведения о математике древней и средневековой Индии весьма неполны и о некоторых этапах развития индийской математики мы можем судить только предположительно. Некоторые сведения о математике древней Индии мы черпаем из комментариев к священным книгам брахманов «Веды». В одной из таких книг, относящейся к VII—V вв. до н. э., «Шулва сутра» («Правила веревки») излагаются Способы построения алтарей и связанные с ними вычисления.
Первые «сиддханты», появившиеся в V в. н. э., имеют явно эллинистическое происхождение. «Пулиса-сиддханта» приписывается некоему Паули-се из Саинтры. По-видимому, ее автором был александрийский астроном Паул ос, бежавший в Индию после разгрома научного центра в Александрии. О греческом происхождении свидетельствует и название «Ромака-сид-дханты»: жителей Восточной Римской империи часто называли ромеями. В сиддхантах применяются некоторые греческие термины: расстояние от центра называется «кендра», минута — «липта». Важнейшая из сидхант была написана Брахмагуптой около 628 г. Она называлась «Брахма-спхута-сиддханта» («Усовершенствованное учение Брахмы») и состояла из 20 книг, большая часть которых была отведена астрономии, но XII книга была специально посвящена арифметике и геометрии, а XVIII книга — алгебре.
Многие трактаты были написаны в стихах, чтобы правила, сформулированные в коротких строках, можно было заучить наизусть. Например, «Тришатика» Шридхары (IX — X вв.) получила свое название от слова «тришата» — «триста», так как содержала триста стихов. Весьма краткое стихотворное изложение, почти непонятное непосвященным, разъяснялось в комментариях.
Крупнейшему
индийскому математику XII в. Бхаскаре принадлежит
трактат «Сиддханта-широмани» («Венец
учения»), переписанный в XIII в. па полосках
пальмовых листьев. Этот трактат состоит
из четырех частей, из которых «Лилавати»
(см. рис.) посвящена арифметике, а «Биджаганита»
— алгебре, остальные две части астрономические.
«Лилавати» (что значит «прекрасная»)
Бхаскара посвятил своей дочери. В поэтической
манере в 13 отделах книги излагаются:
1.Метрология;
2. Действия над целыми числами и дробями и извлечение корней;
3. Способ
обращения, способ ложного
4. Задачи на бассейны и смеси;
5. Суммирование рядов;
6. Планиметрия;
7—11. Вычисление различных объемов;
12. Задачи неопределенного анализа;
13. Задачи комбинаторики.
Другое сочинение Бхаскары — «Биджаганита» — состоит из восьми отделов:
1. Действия над положительными и отрицательными числами;
2—3. Неопределенные уравнения 1-й и 2-й степени;
4. Линейные алгебраические уравнения;
5. Квадратные уравнения;
6. Системы линейных уравнений;
7—8. Неопределенные
уравнения 2-й степени.
Индийская
нумерация
Счет
целых чисел в Индии с древних
времен носил десятичный характер.
Санскрит — индоевропейский язык,
родственный индоевропейским
Одной из первых нумераций, применявшихся в Индии, были цифры «карошти», которыми пользовались в Северной Индии со времени персидского завоевания до III в. н. э. вместе с сирийским письмом. Цифры ка-рошти были во многом похожи на финикийские: числа записывались справа налево, знаки для 1 и 10 были весьма близки к финикийским, имелся знак для 20, представляющий собой соединение двух знаков для 10, и знак для 100, который, как и в финикийской нумерации, не повторялся, а справа от него записывалось число сотен. Однако, в отличие от финикийских цифр, здесь употреблялся специальный знак для 4. Цифры карошти изображены в четвертом столбце таблицы 1.
Начиная с VI в. до н. э. в Индии были широко распространены цифры «брахми». В пятом столбце той же таблицы изображены цифры брахми, воспроизводящие надписи в пещере Назик. В отличие от цифр карошти, цифры брахми записывались слева направо, как индийское письмо. Однако в обеих нумерациях было немало общего. Не говоря уже о том, что первые цифры в обоих случаях изображали три палочки, а четвертая — четыре палочки (в случае карошти — в виде креста), общим было то, что до сотни в обоих случаях применялся чисто аддитивный принцип, а начиная с сотен этот принцип соединялся с мультипликативными: в нумерации брахми последний принцип применялся не только к знаку для 100, но и к знаку для 1000.
Следует отметить, что первые три знака в обеих нумерациях совпадают с китайскими; встречалась в Китае и четверка в виде креста. Важным отличием цифр брахми от карошти было наличие специальных знаков для чисел от 1 до 9; возможно, что цифры карошти представляли собой промежуточную стадию между обозначениями чисел от 1 до 9 с помощью повторения знака для 1, применявшимися в Финикии, Вавилоне и Египте, и обозначениями этих чисел с помощью специальных знаков. Эта особенность цифр брахми стала предпосылкой создания в Индии десятичной позиционной нумерации.
Наряду с цифровой записью в Индии широко применялась словесная система обозначения чисел, этому способствовал богатый по своему словарному запасу санскритский язык, имеющий много синонимов. При этом нуль обозначался словами «пустое», «небо», «дыра»; единица — предметами, имеющимися только в единственном числе: Луна, Земля; двойка — словами «близнецы», «глаза», «ноздри», «губы»; четверка — словами «океаны», «стороны света» и т. д.
Применение позиционного принципа в словесной нумерации, в котором одно и то же слово в зависимости от места имеет разное числовое значение, а названия разрядов опускаются, зафиксировано еще в V в. Например, число 1021 записывалось словами «Луна — дыра — крылья — Луна». Одно из названий нуля — «шунья» (пустое) стало впоследствии основным. Когда в VIII в. индийские сиддханты переводили на арабский язык, слово «шунья» перевели арабским словом «сыфр», имеющим то же значение. Слово «сыфр» при переводе арабских сочинений на латынь было оставлено без перевода в виде ciffra, откуда происходит французское и английское название нуля zero, немецкое слово Ziffer и наше слово «цифра», также первоначально означавшее нуль.
На
основе цифр брахми выработались современные
индийские цифры «деванагари» (божественное
письмо), применяющиеся в десятичной позиционной
системе, от которой происходят десятичные
позиционные системы арабов и европейцев.
Мы называем изобретенные индийцами цифры
1, 2, .., 9 и нуль арабскими, так как заимствовали
их у арабов, но сами арабы называли эти
цифры индийскими, а арифметику, основанную
на десятичной системе —«индийским счетом»
(хисаб ал-Хинд).
Арифметические
действия. Отрицательные
и иррациональные числа
Если наши геометрические курсы в значительной степени восходят к греческой математике, то наша арифметика имеет, несомненно, индийское происхождение. Именно от индийской позиционной нумерации происходит наша нумерация, индийцы же первые разработали правила арифметических действий, основанные на этой нумерации. К основным арифметическим действиям индийцы относили сложение, вычитание, умножение, деление, возведение в квадрат и куб и извлечение квадратного и кубического корней.
Вычисления индийцы производили на счетной доске, покрытой песком или пылью, а то и прямо на земле. Поэтому арифметические вычисления иногда назывались «дхули-карма» — работа с пылью. Числа записывались заостренной палочкой. Чтобы хорошо различать цифры, их писали довольно крупно, поэтому промежуточные выкладки стирались. Это наложило отпечаток на индийские способы вычисления. Сложение и вычитание производились как справа налево, т. е. от низших разрядов к высшим, так и слева направо, от высших разрядов к низшим.
Для умножения существовало около десятка способов. При основном способе умножения операцию можно было начинать как с низшего, так и с высшего разряда. В процессе умножения цифры множимого постепенно стирались, а на их месте записывались цифры произведения. Индийцы применяли и более удобные приемы умножения. Например, расчерчивали счетную доску на сетку прямоугольников, каждый из которых разделен пополам диагональю, по сторонам сетки записывали сомножители, а промежуточные произведения писали в треугольниках и складывали их по диагоналям (см. рис.).
При делении делитель подписывался под делимым так, чтобы первые их цифры находились одна под другой, и из цифр делимого, написанных над делителем, вычиталось максимальное кратное делителя, не превосходящее числа, образованного этими цифрами. Затем делитель передвигался на один разряд вправо и таким же образом вычитался из цифр остатка.
Существует
несколько способов возведения в
квадрат и куб. Шридхара в своей «Патиганите»
(«Искусство вычисления на доске») излагает
методы, которые в наших обозначениях
можно выразить формулами n 2 = ( a+b ) 2 = a
Извлечение квадратного корня в Индии, как и в Китае, основано на разложении квадрата двучлена, но при этом (как и при извлечении кубического корпя) не применялся метод Горнера.
Так
как при выполнении арифметических
действии приходилось стирать
Индийские математики, начиная с Брахмагупты (VII в. н. э.), систематически пользовались отрицательными числами и трактовали положительное число как имущество, а отрицательное — как долг. Брахмагупта приводит все правила арифметических действий над отрицательными числами. Ему еще не была известна двузначность квадратного корня, но уже в 850 г. Магавира в своей книге «Ганита-сара-санграха» («Краткий курс математики») пишет: «Квадрат положительного или отрицательного — числа положительные, их квадратные корни будут соответственно положительными и отрицательными. Так как отрицательное число по своей природе не является квадратом, то оно не имеет квадратного корня». Последние слова Маг-авиры показывают, что он ставил вопрос и об извлечении корня из отрицательного числа, но пришел к выводу, что эта операция невозможна. Не исключено, что об отрицательных числах индийские ученые узнали в результате контактов с китайской наукой. Прямых свидетельств в пользу такого предположения мы не имеем. Во всяком случае, в Индии отрицательные числа не применялись при решении систем линейных уравнений. Индийцы называли положительные числа «дхана» или «сва» (имущество), а отрицательные — «рина» или «кшайа» (долг).
Индийцы применяли символ квадратного корня «му» не только к полным квадратам, но и к полученным квадратичным иррациональностям. Бхаскара с помощью правил
a+ b = a+ a2 −b 2 + a− a 2 −
Алгебра.
Квадратные уравнения