Автор работы: Пользователь скрыл имя, 27 Апреля 2013 в 13:11, реферат
В теории систем массового обслуживания обслуживаемый объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе.
ВВЕДЕНИЕ
Современная классификация систем массового обслуживания
Системы массового обслуживания с ожиданием
где - постоянная.
Только что описанная задача представляет значительный прикладной интерес, и результаты, с которыми мы познакомимся, широко используются для практических целей. Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрланг решил эту задачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле.
Выбор распределения (1) для описания длительности обслуживания произведен не случайно. Дело в том, что в этом предположении задача допускает простое решение, которое с удовлетворительной для практики точностью описывает ход интересующего нас процесса. Распределение (1) играет в теории массового обслуживания исключительную роль, которая в значительной мере вызвана следующим его свойством:
При показательном распределении длительности обслуживания распределение длительности оставшейся части работы по обслуживанию не зависит от того, сколько оно уже продолжалось.
Действительно, пусть означает вероятность того, что обслуживание, которое ужо продолжается время а, продлится еще не менее чем . В предположении, что длительность обслуживания распределена показательно, . Далее ясно, что и . А так как всегда и , и, следовательно,
Требуемое доказано.
Несомненно, что в реальной обстановке показательное время обслуживания является, как правило, лишь грубым приближением к действительности. Так, нередко время обслуживания не может быть меньше, чем некоторая определенная величина. Предположение же (1) приводит к тому, что значительная доля требовании нуждается лишь в кратковременной операции, близкой к 0. Позднее перед нами возникает задача освобождения от излишнего ограничения, накладываемого предположением (1). Необходимость этого была ясна уже самому Эрлангу, и он в ряде работ делал усилия найти иные удачные распределения для длительности обслуживания. В частности, им было предложено так называемое распределение Эрланга, плотность распределения которого дается формулой
где >0, a k— целое положительное число.
Распределение Эрланга представляет собой распределение суммы k- независимых слагаемых, каждое из которых имеет распределение (1).
Обозначим для случая распределения (1) через время обслуживания требования. Тогда средняя длительность обслуживания равна
Это равенство даст нам cпосоá оценки параметра по опытным данным. Как легко вычислить, дисперсия длительности обслуживания равна