Автор работы: Пользователь скрыл имя, 22 Октября 2013 в 22:53, реферат
Растущий интеpес философии и методологии познания к теме моделиpования был вызван тем значением, котоpое метод моделиpования получил в совpеменной науке, и в особенности в таких ее pазделах, как физика, химия, биология, кибеpнетика, не говоpя уже о многих технических науках.
ВВЕДЕНИЕ 3
МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ 6
МЕТОДОЛОГИЯ НАУЧНЫХ ИССЛЕДОВАНИЙ 11
ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ 12
ВОЗНИКНОВЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ 13
КЛАССИФИКАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ 14
ФИЛОСОФИЯ КИБЕРНЕТИКИ 18
ОСОБЕННОСТИ КИБЕРНЕТИЧЕСКОГО МОДЕЛИРОВАНИЯ 19
МОДЕЛИ МИРА 21
КИБЕРНЕТИКА И СОЗНАНИЕ 23
МОДЕЛИРОВАНИЕ МЫСЛИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА 25
ИСКУСТВЕННЫЙ ИНТЕЛЛЕКТ 27
ПРОБЛЕМЫ ЭКСПЕРТНЫХ СИСТЕМ, ИСКУССТВЕННОГО ИНТЕЛЛЕКТА И НЕЙРОСЕТЕЙ 31
ЗАКЛЮЧЕНИЕ 35
ЛИТЕРАТУРА 37
Благодаря кибернетике и созданию
ЭВМ одним из основных способов познания,
наравне с наблюдением и
целых регионов, до глобальных моделей.
В 1972 году на основе метода "системной динамики" Дж. Форрестера были построены первые так называемые "модели мира", нацеленные на выработку сценариев развития всего человечества в его взаимоотношениях с биосферой. Их недостатки заключались в чрезмерно высокой степени обобщения переменных, характеризующих процессы, протекающие в мире; отсутствии данных об особенностях и традициях различных культур и так далее. Однако это оказалось очень многообещающим направлением.
Постепенно указанные недостатк
М. Месаровичем и Э. Пестелем
были построены глобальные модели на основе
теории иерархических систем, а В. Леонтьевым
- на основе разработанного им в экономике
метода "затраты-выпуска". Дальнейший
прогресс в глобальном моделировании
ожидается на путях построения моделей,
все более адекватных реальности, сочетающих
в себе глобальные, региональные и локальные
моменты.
Простираясь на изучение все более сложных систем, метод моделирования становится необходимым средством, как познания, так и преобразования действительности. В настоящее время можно говорить как об одной из основных, о преобразовательной функции моделирования, выполняя которую оно вносит прямой вклад в оптимизацию сложных систем. Преобразовательная функция моделирования способствует уточнению целей и средств реконструкции реальности. Свойственная моделированию трансляционная функция способствует синтезу знаний - задаче, имеющей первостепенное значение на современном этапе изучения мира.
Прогресс в области
Явления, которые отображаются в таких фундаментальных понятиях кибернетики, как информация и управление, имеют место в органической природе и общественной жизни. Таким образом, кибернетику можно определить как науку об управлении и связи с живой природой в обществе и технике.
Один из важнейших вопросов, вокруг которого идут философские дискуссии - это вопрос о том, что такое информация, какова ее природа? Для характеристики природы информационных процессов необходимо кратко рассмотреть естественную основу всякой информации, а таковой естественной основой информации является присущее материи объективное свойство отражения.
Положение о неразрывной
связи информации и отражения
стало одним из важнейших в изучении
информации и информационных процессов
и признается абсолютным большинством
отечественных философов.
Информация в живой природе в отличие
от неживой играет активную роль, так как
участвует в управлении всеми жизненными
процессами.
Материалистическая теория отражения
видит решение новых проблем
науки и, в частности, такой кардинальной
проблемы естествознания как переход
от неорганической материи к органической,
в использовании
Сознание является не столько продуктом развития природы, сколько продуктом общественной жизни человека, общественного труда предыдущих поколений людей. Оно является существенной частью деятельности человека, посредством которой создается человеческая природа и не может быть принята вне этой природы.
Если в машинах и вообще в неорганической природе отражение есть пассивный, мертвый физико-химический, механический акт без обобщения и проникновения в сущность обобщаемого явления, то отражение в форме сознания есть, то мнению Ф.Энгельса "познание высокоорганизованной материей самой себя, проникновение в сущность, закон развития природы, предметов и явлений объективного мира".
В машине же отражение не осознанно, так как оно осуществляется без образования идеальных образов и понятий, а происходит в виде электрических импульсов, сигналов и т.п. Поскольку машина не мыслит, эта не есть та форма отражения, которая имеет место в процессе познания человеком окружающего мира. Закономерности процесса отражения в машине определяются, прежде всего, закономерностями отражения действительности в сознании человека, так как машину создает человек в целях более точного отражения действительности, и не машина сама по себе отражает действительность, а человек отражает ее с помощью машины. Поэтому отражение действительности машиной является составным элементом отражения действительности человеком. Появление кибернетических устройств приводит к возникновению не новой формы отражения, а нового звена, опосредующего отражение природы человеком.
В понятие «искусственный интеллект» вкладывается различный смысл - от признания интеллекта у ЭВМ, решающих логические или даже любые вычислительные задачи, до отнесения к интеллектуальным лишь тех систем, которые решают весь комплекс задач, осуществляемых человеком, или еще более широкую их совокупность. Мы постараемся вычленить тот смысл понятия «искусственный интеллект», который в наибольшей степени соответствует реальным исследованиям в этой области.
Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. «безмысленная», неинтеллектуальная.
Материалистическая теория отражения
видит решение новых проблем
науки и, в частности, такой кардинальной
проблемы естествознания как переход
от неорганической материи к органической,
в использовании методологическ
Сознание является не столько продуктом развития природы, сколько продуктом общественной жизни человека, общественного труда предыдущих поколений людей. Оно является существенной частью деятельности человека, посредством которой создается человеческая природа и не может быть принята вне этой природы.
Общность мышления со способностью
отражения служит объективной основой
моделирования процессов
Несмотря на качественное различие
машины и мозга в их функциях есть
общие закономерности (в области
связи, управления и контроля), которые
и изучает кибернетика. Но эта
аналогия между деятельностью
Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:
в которых заложены:
а) принцип обратной связи
б) структурно-функциональная аналогия
в) способность накапливать информацию14
есть существенные отличия, такие как:
Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина «говорит» не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.
Использование математических методов
при анализе процессов
Согласно определению Мак-Каллока и Питтса формальный нейрон15 -это элемент, обладающий следующими свойствами:
Искусственный нейрон, смоделированный Мак-Каллоком и Питтсом, имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации возбуждения нейрона. Схема представления искусственного нейрона приведена на рисунке 2.
Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и других) отвлечены от качественной специфики естественных нейронов. Однако с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным.
Существует ряд подходов к изучению мозговой деятельности:
Его основные принципы:
а) выделение информационных связей внутри системы
б) выделение сигнала из шума
в) вероятностный характер
Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н.М. Амосова16, создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности:
Таким образом, делается вывод о
критическом отношении к
Экспертными системами принято называть те или иные программные средства, выполняющие те или иные аналитические функции. В зависимости от уровня и способа решения задач они делятся на следующие группы17:
Информация о работе Философские аспекты математического моделирования