Автор работы: Пользователь скрыл имя, 06 Июля 2014 в 20:28, реферат
Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания. То что объединяет исследователей в области искусственной жизни (ИЖ) - это методы, в отличие от их целей. Конечно, существует общий интерес к жизни как к феномену для изучения.
Введение 3
Взгляды на термин "знание" 5
Аспект представления знаний 5
Знание как основа 6
Рефлексия как одна из составляющих интеллектуальной деятельности 9
Понятие рефлексии 9
Неотъемлимость рефлексии 12
Математическо-технические аспекты реализации систем
искусственного интеллекта 13
Природа обработки естественного языка 15
Основная проблема обработки естественного языка 16
Распознавание речи 17
Практическая реализация 18
Семантические сети 20
Искусственный интеллект и теоретические проблемы психологии 21
Сознаниие и разум 23
Что такое сознание? 23
Сознание и выживание 24
Есть ли разум? 25
Чем же отличается сознание от самообучения? 26
Человек вооружен 27
Осознавание себя 27
Сознание - это не материальный предмет 28
Разумны только люди? 30
Заключение 31
Словарь терминов 33
Использованная литература 35
Распознавание речи
По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.
Существующие технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многозначных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача - распознавание по крайней мере 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерческого использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.
Для успешного распознавания речи следует решить следующие задачи:
Существующие сегодня системы распознавания речи основываются на сборе всей доступной (порой даже избыточной) информации, необходимой для распознавания слов. Исследователи считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавани, но тем не менее в настоящее время даже при распознавании небольших сообщений нормальной речи, пока невозможно после получения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.
Практическая реализация
Разработки в области искусственного интеллекта ведутся и в Новосибирском Государственном Техническом Университете. На факультете Прикладной Математики и Информатики (ФПМиИ) элементы теории искусственного интеллекта входят в базовую программу подготовки специалистов. Одним из ведущих специалистов в данной области является профессор Хабаров В.И., зав. кафедрой Программных Систем и Баз Данных (ПСиБД). Одно из направлений его исследований связано с внедрением семантических и нейронных сетей в системы управления и анализа данных, систем накопления и представления знаний. В качестве примера можно назвать разработку CASE-технологии, базированной на ультрасетях.
Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:
Несмотря на высокие потенциальные возможности CASE-технологии (увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают подобных результатов. Применение семантических сетей для проектирования данного вида систем является по своей сути шагом в абсолютно новом направлении, что позволяет проектировать и внедрять интеллектуальные обучаемые системы для поддержки принятия решений.
Семантические сети
Семантическая сеть - структура для представления знаний в виде узлов, соединенных дугами. Самые первые семантические сети были разработаны в качестве языка-посредника для систем машинного перевода, а многие современные версии до сих пор сходны по своим характеристикам с естественным языком. Однако последние версии семантических сетей стали более мощными и гибкими и составляют конкуренцию фреймовым системам, логическому программированию и другим языкам представления.
Начиная с конца 50-ых годов были создано и применены на практике десятки вариантов семантических сетей. Несмотря на то, что терминология и их структура различаются, существуют сходства, присущие практически всем семантическим сетям:
Однако существуют и различия: понятие значения с точки зрения философии; методы представления кванторов общности и существования и логических операторов; способы манипулирования сетями и правила вывода, терминология. Все это варьируется от автора к автору. Несмотря не некоторые различия, сети удобны для чтения и обработки компьютером, а также достаточно мощны, чтобы представить семантику естественного языка.
Искусственный интеллект
и теоретические проблемы психологии
Можно выделить две основные линии работ по ИИ. Первая связана с совершенствованием самих машин, с повышением "интеллектуальности" искусственных систем. Вторая связана с задачей оптимизации совместной работы "искусственного интеллекта" и собственно интеллектуальных возможностей человека.
Переходя к психологическим проблемам искусственного интеллекта, можно отметить три позиции по вопросу о взаимодействии психологии и искусственного интеллекта.
Популярные идеи системного анализа позволили сделать сравнение принципов работы искусственных систем и собственно человеческой деятельности важным эвристическим приемом выделения именно специфического психологического анализа деятельности человека.
В 1963 г. выступая на совещании по философским вопросам физиологии ВНД и психологии, А.Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательно соотношение "машинного" и "немашинного" есть соотнесение операционального и неоперационального в человеческой деятельности. Однако в последствии при сравнении операций, из которых слагается работа машины, и операций как единиц деятельности человека выявились существенные различия - в психологическом смысле "операция" отражает способ достижения результатов, процессуальную характеристику, в то время как применительно к машинной работе этот термин используется в логико-математическом смысле (характеризуется результатом).
В работах по искусственному интеллекту постоянно используется термин "цель". Анализ отношения средств к цели А.Ньюэлл и Г.Саймон называют в качестве одной из "эвристик". В психологической теории деятельности "цель" является конституирующим признаком действия в отличии от операций (и деятельности в целом). В то время как в искусственных системах "целью" называют некоторую конечную ситуацию к которой стремится система. Признаки этой ситуации должны быть четко выявленными и описанными на формальном языке. Цели человеческой деятельности имеют другую природу. Конечная ситуация может по разному отражаться субъектом: как на понятийном уровне, так и в форме представлений или перцептивного образа. Это отражение может характеризоваться разной степенью ясности, отчетливости. Кроме того, для человека характерно не просто достижение готовых целей но и формирование новых.
Также работа систем искусственно интеллекта, характеризуется не просто наличием операций, программ, "целей", но и оценочными функциями. И у искусственных систем есть своего рода "ценностные ориентации". Специфику человеческой мотивационно-эмоциональной регуляции деятельности составляет использование не только константных, но и ситуативно возникающих и динамично меняющихся оценок, существенно также различие между словесно-логическими и эмоциональными оценками. В существовании потребностей и мотивов видится различие между человеком и машиной на уровне деятельности. Этот тезис повлек за собой цикл исследований, посвященных анализу специфики человеческой деятельности. Позже была показана зависимость структуры мыслительной деятельности при решении творческих задач от изменения мотивации.
Как в действительности показала история, психология и искусственный интеллект как научное направление могут находится в достаточно тесном сотрудничестве, взаимно базируясь на достижениях друг друга.
Несколько слов о сознании
Сознание возникает у животных как одно из средств, улучшающее их адаптацию к окружающей среде. Быстрая (по сравнению со временем жизни животного) адаптация требует способности предвидеть, а мотивом адаптации служат биологические жизненные потребности организма. Искусственная система, обладающая такими свойствами, тоже приобретает сознание.
Что такое сознание?
Как устроено сознание? Какие процессы, механизмы, взаимодействующие объекты требуются, чтобы возникло сознание и осознание себя? Что нужно для изготовления не модели сознания, а просто сознания?
Обычно слово сознание применяется, как характеристика отдельного существа. Оно может "потерять сознание". А слово разум означает принципиальную способность быть сознательным. Например, "человек разумный". Однако, есть и другие толкования.
Не известно, как доказать, что человек думает. Уверенность в том, что люди думают, основана на опыте и убеждённости в собственном сознании, а не на измерениях и логических выводах из них. Вот почему науке трудно подступиться к глубокому изучению сознания. Мы можем изучать мозг, нейроны, языки, поведение, но не сознание само по себе. Мы наблюдаем не разум, а разумное поведение.
Раз уж нельзя это точно доказать, то нужно субъективно судить о наличии сознания у некоторого объекта по его поведению. При этом можно принять какое-то поведение за сознательное, а впоследствии выяснить, что это была ошибка. Но более надёжного способа нет, и не стоит терять время на его установление, если только это не окажется критичным для ответа на поставленные вопросы.