Автор работы: Пользователь скрыл имя, 06 Июля 2014 в 20:28, реферат
Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания. То что объединяет исследователей в области искусственной жизни (ИЖ) - это методы, в отличие от их целей. Конечно, существует общий интерес к жизни как к феномену для изучения.
Введение 3
Взгляды на термин "знание" 5
Аспект представления знаний 5
Знание как основа 6
Рефлексия как одна из составляющих интеллектуальной деятельности 9
Понятие рефлексии 9
Неотъемлимость рефлексии 12
Математическо-технические аспекты реализации систем
искусственного интеллекта 13
Природа обработки естественного языка 15
Основная проблема обработки естественного языка 16
Распознавание речи 17
Практическая реализация 18
Семантические сети 20
Искусственный интеллект и теоретические проблемы психологии 21
Сознаниие и разум 23
Что такое сознание? 23
Сознание и выживание 24
Есть ли разум? 25
Чем же отличается сознание от самообучения? 26
Человек вооружен 27
Осознавание себя 27
Сознание - это не материальный предмет 28
Разумны только люди? 30
Заключение 31
Словарь терминов 33
Использованная литература 35
Можно пытаться объяснить, что так как кибернетика позволяет моделировать некоторые функции мозга, то сознание или разум имеет чисто материальную основу. Однако данная область может считаться слабо изученной, несмотря на труд не одного поколения ученых, и делать подобные выводы еще более чем рано. Данное утверждение не есть поддержка сторонников идеализма, оно лишь является мнением человека, немного занимающегося математикой.
До сих пор диалектико-материалистиеское понимание мышления опиралось главным образом на обобщенные данные психологии, физиологии и языкознания. Данные кибернетики позволяют поставить вопрос о более конкретном понимании мышления.
Инструментом философии является знание. Именно инструментом, а не результатом. Знание не есть конечный предмет, который можно положить в сундук и сказать: “Да, теперь у меня есть знание!” Знание - это цепочка. Знание в области искусственного интеллекта - тоже есть цепочка, причем бесконечная.
Инструментом же кибернетики является моделирование. С точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала. Поэтому нельзя стопроцентно смоделировать разумное поведение, объект способный мыслить, и поместить его все в тот же сундук. Все это вполне согласуется с понятием знания.
Словарь терминов
Ниже приводятся наиболее часто употребляемые понятия в терминологии проектирования систем искусственного интеллекта.
База знаний (Knowledge Base):
Совокупность программных средств, обеспечивающих поиск, хранение, преобразование и запись в памяти компьютера сложно структурированных информационных единиц (знаний).
Вывод (Inference):
Получение новых информационных единиц из ранее известных. Частным случаем вывода является логический вывод.
Знания (Knowledge):
Совокупность сведений, образующих целостное описание, соответствующее некоторому уровню осведомленности об описываемом предмете, событии, проблеме и т.д.
ИИ-программирование (AI-programming):
Разработка инструментального программного обеспечения для решения задач искусственного интеллекта. В ИИ-программировании создаются языки программирования, ориентированные на особенности задач искусственного интеллекта, языки представления и обработки знаний, экспертные оболочки и другие инструментальные средства.
Искусственный интеллект (Artificial Intelligence, AI):
Научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными (представление знаний, обучение, общение и т.п.).
Нейронная сеть (Neural Network, NN):
Сеть, состоящая из множества простых процессоров (нейронов, узлов), каждый из которых, возможно, имеет локальную память. Нейроны связаны однонаправленными коммуникационными каналами (связями), по которым передается численные (в противоположность символьным) данные. Узлы манипулируют только своими локальными данными и входными данными, которые они получают по связям.
Представление
Действие, делающее некоторое понятие воспринимаемым посредством фигуры, записи, языка или формализма.
Представление знаний
Формализация истинных убеждений посредством фигур, записей или языков.
Использованная литература