Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 15:51, автореферат
Цель работы. Повышение эффективности комплексной переработки нефелинов с увеличением товарного выхода, расширением ассортимента и повышением качества продукции на основе использования в технологии гидрокарбоалюминатов кальция (ГКАК), синтезированных в условиях глиноземного производства.
На правах рукописи
СИЗЯКОВА Екатерина Викторовна
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СПОСОБА
КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ
Специальность 05.16.02 – Металлургия черных, цветных
и редких металлов
А в т о р е ф е р а т
диссертации на соискание ученой степени
кандидата технических наук
САНКТ-ПЕТЕРБУРГ
2007
Работа выполнена
в государственном
Научный руководитель -
доктор технических наук,
профессор И.Н.Белоглазов
Официальные оппоненты:
доктор технических наук,
профессор В.А.Утков
кандидат технических наук М.В.Никитин
Ведущее предприятие - Филиал "Волховский алюминиевый завод" открытого акционерного общества "Сибирско-Уральская алюминиевая компания".
Защита диссертации состоится 28 мая 2007 г. в 16 ч 30 мин на заседании диссертационного совета Д 212.224.03 при Санкт-Петербургском государственном горном институте имени Г.В.Плеханова (техническом университете) по адресу: 199106, г.Санкт-Петербург, 21 линия, д.2, ауд. 2205.
С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного горного института.
Автореферат разослан 27 апреля 2007 г.
УЧЕНЫЙ СЕКРЕТАРЬ
диссертационного совета
д.т.н., доцент
Актуальность темы. Алюминиевая промышленность России из-за недостаточных ресурсов традиционного алюминиевого сырья – бокситов в значительной мере базируется на небокситовом сырье – нефелинах. В настоящее время в нашей стране из нефелинов производится более 40% глинозема. Разработаны планы дальнейшего вовлечения нефелинов в сферу производства.
Отечественными учеными создан эффективный способ комплексной переработки нефелинов на глинозем, соду, поташ, портландцемент и галлий.
За последние 10-15 лет в результате трудов Ведущих научных школ металлургов Санкт-Петербургского государственного горного института и ВАМИ способ доведен до высокого уровня по качеству продукции и основным технико-экономическим показателям.
Однако объективно в такой сложной многопередельной технологии, как комплексная переработка нефелинов, всегда остаются большие возможности для дальнейшего повышения ее эффективности. Реализация этих возможностей в значительной мере может быть связана с широким использованием в технологии нефелинов карбоалюминатных соединений, что и доказывается данной диссертационной работой. Она опирается на фундамент, заложенный в этом направлении трудами проф. Сизякова В.М. и его учеников.
Исследования выполнены в соответствии с планом госбюджетных работ СПГГИ(ТУ) по приоритетным направлениям науки и техники и техническим заданием филиала "Пикалевский глиноземный завод – СУАЛ".
Цель работы. Повышение эффективности комплексной переработки нефелинов с увеличением товарного выхода, расширением ассортимента и повышением качества продукции на основе использования в технологии гидрокарбоалюминатов кальция (ГКАК), синтезированных в условиях глиноземного производства.
Методы исследований
При изучении химизма и механизма различных реакций, идентификации новых синтезированных фаз широко использовались рентгеноструктурный, термогравиметрический, кристаллооптический, электронно-микроскопический, фотоколориметрический, ИК-спектроскопический и химический методы анализа.
При выводе зависимостей применены положения теории математического и физического моделирования, а также системного анализа процессов. Достоверность полученных данных доказана сходимостью теоретических и экспериментальных результатов при проведении лабораторных исследований, а также в ходе опытно-промышленных и промышленных испытаний.
Научная новизна работы
- построены изотермы
метастабильного равновесия в
системе СаСО3 – 4CaO×Al2O3×0,5 CO2×11H
- предложен механизм действия нового синтезированного модификатора (ГКАК + CaCO3) в процессе роста и упрочнения кристаллов Al(OH)3; в отличие от известного модификатора СаСО3 новый существенно повышает выход цементирующей массы – продукта полимеризации - для агломерирования частичек Al(OH)3;
- выявлена роль ГКАК в процессе выщелачивания нефелиновых спеков при минимальных вторичных потерях полезных компонентов; предложен механизм перехода SiO2 в алюминатный раствор при выщелачивании спека, определяемый структурными модификациями a'- и b-2СаО×SiO2 (C2S) и условиями кристаллизации ГКАК и гидроалюмосиликата натрия (ГАСН);
- предложен механизм процесса сверхглубокого обескремнивания с получением качественно новых алюминатных растворов с кремневым модулем 50000 ед.; он базируется на активации гетерогенной реакции взаимодействия ГКАК с алюминатным раствором за счет искусственно создаваемых активных химических центров на поверхности оборотных продуктов реакции;
- исследована реакция
взаимодействия ГКАК с гидрокси
- установлена зависимость активности ГКАК от содержания в нем карбонат-ионов СО32- при взаимодействии с гипсом, что связано с особенностью структуры ГКАК, синтезированного в алюминатно-щелочной системе.
Практическая значимость
- разработана и испытана в опытно-промышленном масштабе в филиале "ПГЗ-СУАЛ" технология выщелачивания спека при пониженной температуре в условиях формирования вторичных образований в виде гидрокарбоалюмината кальция, что обеспечивает снижение потерь глинозема и щелочи на 2-3% и улучшает качество нефелинового шлама для производства портландцемента;
- разработан эффективный модификатор (ГКАК+СаСО3) роста и упрочнения кристаллов Al(OH)3 для получения крупнозернистого глинозема;
- разработана эффективная
- предложена технология
получения быстротвердеющего
- разработана и проверена в промышленном масштабе в глиноземном цехе Волховского алюминиевого завода технология получения высокоглиноземистого цемента путем спекания ГКАК с Al(OH)3 при пониженной температуре клинкерообразования (1250-1275оС); выпущены крупные партии высокоглиноземистого цемента в количестве 800 т.
Апробация работы
Материалы диссертационной работы докладывались на Всероссийской конференции "Новые технологии в металлургии, обогащении, химии и экологии" (Санкт-Петербург, 2004), на ежегодном научном семинаре "Асеевские чтения" (Санкт-Петербургский государственный горный институт, 2006), на курсах повышения квалификации работников алюминиевой промышленности России (Санкт-Петербургский государственный горный институт, 2005).
Публикации. По теме диссертации опубликовано 8 статей, получен 1 патент (положительное решение о выдаче патента на изобретение по заявке № 2006139713 от 09.11.06).
Структура диссертации
Диссертация состоит из введения, 4 глав, выводов, списка литературы и приложения. Работа изложена на 178 страницах машинописного текста, содержит в том числе 26 таблиц и 35 рисунков.
Во введении обоснована актуальность работы, сформулированы ее цель, задачи, научная новизна, практическая ценность, изложены основные положения, выносимые на защиту.
В первой главе выполнен аналитический обзор по синтезу гидрокарбоалюминатов кальция и выявлены основные направления его эффективного использования в технологии комплексной переработки нефелинов.
Вторая глава посвящена теоретическому обоснованию и разработке технологии низкотемпературного выщелачивания нефелиновых спеков, когда вторичные образования целенаправленно формируются в виде гидрокарбоалюмината кальция, что обеспечивает повышение извлечения полезных компонентов.
В третьей главе приведены результаты системных исследований по новому способу синтеза ГКАК на основе CaCO3 в условиях глиноземного производства. Разработанный способ лег в основу технологии получения качественно новых алюминатных растворов с кремневым модулем 50 000 ед. и нового модификатора роста и упрочнения кристаллов песочного глинозема.
Четвертая глава раскрывает теоретические и практические положения эффективного использования карбоалюминатных соединений в технологиях получения новых попутных продуктов при комплексной переработке нефелинов.
ОСНОВНЫЕ ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ
1. Оптимизация
гидрохимических процессов (
Анализ промышленной технологии выщелачивания нефелиновых спеков показал, что этот процесс протекает при достаточно высокой температуре 90оС за счет перегрева шаров в мельнице и повышенной температуры оборотного щелочно-алюминатного раствора.
В этих условиях достаточно энергично протекает реакция разложения основного кремнеземистого компонента алюминатного спека – двухкальциевого силиката (что является главной причиной вторичных потерь полезных компонентов)
2CaO×SiO2 + 2NaOH + H2O ®2Ca(OH)2 +Na2SiO3 (1)
Рентгенографическое изучение фазового состава пикалевских спеков показало, что двухкальциевый силикат в них существует как в форме b-2CaO×SiO3, так и в форме a¢-2CaO×SiO3 (~70% b-С2S, ~30% a¢-С2S).
Установлено, что при
гидрохимической переработке сп
a'-2CaO×SiO2 + H2O ® 2CaO×SiO2×H2O (C2SHI) (2)
b-2CaO×SiO2 + 2H2O ® CaO×SiO2×H2O (CSHI) + Ca(OH)2 (3)
В результате гидратации модификации a¢-C2S на ее поверхности отмечается образование агрегатированных кристаллов высокоосновной фазы C2SH (эндотермический эффект 730-750оС), обладающей невысокой удельной поверхностью (3-4 м2/г) и не оказывающей заметного тормозящего действия на переход SiO2 в алюминатный раствор.
Показано, что при повышенной температуре выщелачивания 90оС концентрация SiO2 за счет быстрого разложения a¢-модификации достигает в алюминатном растворе предельного метастабильного уровня (max) по реакции (1). В этой области ионы Si(IV) образуют с ионами Аl(III) ассоциаты, где главную роль играют кооперативные водородные связи. После достижения максимальной концентрации SiO2 в алюминатном растворе идет самопроизвольный процесс конденсации ассоциатов с переходом в алюмо-кремниевые комплексы Al-O-Si (полоса 980 см-1 в ИК-спектрах); причем образование алюмосиликатных комплексов Al-O-Si с последующей кристаллизацией ГАСН идет интенсивно и глубоко
2Na2SiO3 + 2NaAl(OH)4 ® Na2O×Al2O3×2SiO2×2H2O + 4NaOH , (4)
что приводит к существенным вторичным потерям и глинозема, и щелочи (на уровне 4-5%); при этом почти весь кремнезем из раствора переходит в ГАСН, остаток SiO2 (20-30%) кристаллизуется в составе малонасыщенных по кремнезему твердых растворов – гидрогранатов кальция 3CaO×Al2O3×nSiO2×(6-2n)H2O (C3ASnH6-2n):
3Ca(OH)2 + 2NaAl(OH)4 ® 3CaO×Al2O3×6H2O (C3AH6) + 2NaOH (5)
[SiO4]4- Û 4(OH)-, (6)
Малая степень насыщения гидрогранатов кальция по SiO2 (n = 0,3-0,4) обусловлена кинетикой их образования. При температуре 90оС скорость образования С3AН6 – основы твердого раствора - намного опережает скорость непосредственно реакции обескремнивания путем изоморфного обмена [SiO4]4- Û 4(OH)-, механизм кристаллизации гидрогранатов кальция сводится к диффузии простых ионов [SiO4]4- в сформировавшуюся кристаллическую решетку С3AН6, а скорость твердофазной диффузии при 90оС весьма невелика.