Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 07:36, курс лекций
Трудно назвать отрасль народного хозяйства, в которой не применялась бы тепловая энергия. Обеспечение нормальных микроклиматических условий в помещениях жилых, общественных зданий и зданий промышленного назначения, обеспечение нормального хода технологических процессов в промышленности, обеспечение чистоты атмосферы в помещениях и на рабочих местах — далеко не полный перечень сторон разнообразной деятельности и жизни человека, требующих применения тепловой энергии. Поэтому так остро поставлены вопросы развития техники теплогазоснабжения и вентиляции.
ВВЕДЕНИЕ………………………………………………………………...5
1. Логистика систем теплогазоснабжения и вентиляции…………………………………………………………….6
2. Проблематика систем теплогазоснабжения и вентиляции…………………………………………………………...13
2.1 Теплопотери в зданиях и сооружениях……………………………..13
2.1.1 Теплопотери через ограждающие конструкции………………….14
2.1.2 Теплопотери через оконные проемы……………………………...21
2.1.3 Теплопотери в системах вентиляции……………………………..26
2.2 Теплопотери в тепловых сетях ……………………………………...27
3 Пути решения проблем теплогазоснабжения и вентиляции…………………………………………………………..29
3.1 Теплозащита зданий и сооружений…………………………………29
3.1.1 Теплоизоляция внешних стен……………………………………..30
3.1.2 Теплоизоляция окон………………………………………………..33
3.1.3 Система вентиляции………………………………………………..38
3.2 Теплозащита тепловых сетей………………………………………...41
4 Энергоэффективность систем теплогазоснабжения и вентиляции………………………………………………………...46
4.1 Методика определения экономической целесообразности применения энергосберегающего мероприятия………………………..47
4.2 Экономия теплоты, воды и электроэнергии в системах водоснабжения жилых микрорайонов…………………………………..48
4.3 Эффективность изоляции стояков системы горячего водоснабжения……………………………………………………………49
4.4 Использование вторичных энергоресурсов для нагрева теплоносителей в системах отопления, вентиляции и кондиционирования воздуха……………………………………………..50
4.5 Сокращение энергопотребления…………………………………….51
4.6 Повышение энергоэффективности теплосетей…………………….51
5 Методология научных исследований………………….53
5.1 Цели и задачи НИР…………………………………………………...53
5.1.1 Организация НИРС…………………………………………………54
5.2 Формы НИР…………………………………………………………...55
5.3 Финансирование НИР………………………………………………..57
5.4 Внедрение и эффективность научных исследовани ……………..59
5.5 Этапы НИР……………………………………………………………62
5.6 Основные методы НИР………………………………………………68
5.6.1 Методы эмпирического исследования…………………………….68
5.6.2 Методы теоретического исследования……………………………73
6. Информационные технологии в теплогазоснабжении и вентиляции……………………….76
6.1 Основные этапы работы с информацией……………………………76
6.1.1 Определение цели и план работы………………………………….76
6.1.2 Сбор информации…………………………………………………..77
6.1.3 Обработка и систематизация информации………………………..79
6.1.4 Интерпретация информации……………………………………….81
6.1.5 Составление информационного отчета…………………………...82
6.2 Культура работы с информацией …………………………………...83
6.2.1 Критерии оценки источников информации………………………83
6.3 Представление и распространение информации…………………...85
6.3.1 Уровни представления информации………………………………87
6.3.2 Каналы распространения информации……………………87
7. Планирование эксперимента………………………………92
8. Обработка результатов эксперимента…………………98
8.1 Предварительная обработка………………………………………….99
8.2 Дисперсия параметра оптимизации………………………………..102
8.3 Проверка однородности дисперсий………………………………..103
8.4 Рандомизация………………………………………………………..105
9. Экология систем теплогазоснабжения и вентиляции………………………………………………………….106
9.1 Технологии в энергетике……………………………………………106
9.2 Защита от шума, инфразвука и вибраций………………………….110
9.2.1 Акустический расчет и методы снижения шума………………..110
9.3 Загрязнение водных ресурсов………………………………………111
9.4 Мероприятия по охране атмосферы………………………………..113
Библиографический список…………………………………………….115
Наименование материала стены |
Толщина стены и соответствующее ей термическое сопротивление |
Необходимая толщина по первому условию (R=1,1 °С·м. кв./ Вт) и второму условию (R=3,33 °С·м. кв./ Вт) |
Полнотелый керамический кирпич |
510 мм, R=1,1 °С·м. кв./Вт |
510 мм -1550 мм |
Керамзитобетон (плотность 1200 кг/куб.м.) |
300 мм, R=0,8 °С·м. кв./Вт |
415 мм -1250 мм |
Деревянный брус |
150 мм, R=1,0 °С·м. кв./Вт |
165 мм -500 мм |
Деревянный щит с заполнением минеральной ватой М 100 |
100 мм, R=1,33 °С·м. кв./Вт |
85 мм- 250 мм |
Из таблицы 1 видно, что большинство жилья в Алтайском крае не удовлетворяет требованиям по теплосбережению, при этом даже первое условие не соблюдается во многих вновь строящихся зданиях. Поэтому, подбирая котел или обогревательные приборы необходимо рассчитать реальные теплопотери помещений объекта.
Ниже изложена методика расчета теплопотерь загородного дома. Дом теряет тепло через стену, крышу, сильные выбросы тепла идут через окна, в землю тоже уходит тепло, существенные потери тепла могут приходиться на вентиляцию. Тепловые потери в основном зависят от:
Ограждающие конструкции сопротивляются утечкам тепла, поэтому их теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередачи. Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений.
R = ΔT/q, (1)
где q – количество тепла, которое теряет квадратный метр ограждающей поверхности, (Вт/м. кв.);
ΔT – разница между температурой на улице и в комнате (°С);
R –
сопротивление теплопередачи (°
Когда речь идет о многослойной конструкции, то сопротивление слоев складываются. Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:
R(сумм.)= R(дерев.) + R(воз.) + R(кирп.). (2)
Расчет на теплопотери проводят для самого неблагоприятного периода, которым является самая морозная и ветреная неделя в году. В строительных справочниках, как правило, указывают тепловое сопротивление материалов исходя из этого условия и климатического района (или наружной температуры).
Таблица 2 – Сопротивление теплопередачи различных материалов при ΔT = 50 °С (Тнар. = –30 °С, Твнутр. = 20 °С.)
Материал и толщина стены |
Сопротивление теплопередаче Rm, |
Кирпичная стена толщиной в 3 кирпича (79 см) толщиной в 2,5 кирпича (67 см) толщиной в 2 кирпича (54 см) толщиной в 1 кирпич (25 см) |
0,592 0,502 0,405 0,187 |
Сруб из бревен Ø 25 |
0,550 |
Сруб из бруса толщиной 20 см толщиной 10 см |
0,806 0,353 |
Каркасная стена (доска + минвата + доска) 20 см |
0,703 |
Стена из пенобетона 20 см Стена из пенобетона 30 см |
0,476 0,709 |
Штукатурка по кирпичу, бетону, пенобетону (2-3 см) |
0,035 |
Потолочное (чердачное) перекрытие |
1,43 |
Деревянные полы |
1,85 |
Двойные деревянные двери |
0,21 |
Для правильного выбора материалов и толщин ограждающих конструкций применим эти сведения к конкретному примеру. В расчете тепловых потерь на один кв. метр участвуют две величины:
Температуру в помещении определим в 20 °С, а наружную температуру примем равной –30 °С. Тогда перепад температур ΔT будет равным 50 °С. Стены выполнены из бруса толщиной 20 см, тогда R= 0,806 °С·м. кв./ Вт.
Тепловые потери составят 50 / 0,806 = 62 (Вт/м. кв.). Для упрощения расчетов теплопотерь в строительных справочниках приводят теплопотери разного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. В частности, даются разные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разная тепловая картина для помещений первого и верхнего этажа.
Рассмотрим пример расчета тепловых потерь двух разных комнат одной площади с помощью таблиц.
Пример 1. Угловая комната (первый этаж)
Характеристики комнаты:
Рассчитаем площади теплоотдающих поверхностей.
Площадь наружных стен за вычетом окон: Sстен(5+3,2)х2,7-2х1,0х1,6 = 18,94 кв. м.
Площадь окон: Sокон = 2х1,0х1,6 = 3,2 кв. м.
Площадь пола: Sпола = 5х3,2 = 16 кв. м.
Площадь потолка: Sпотолка = 5х3,2 = 16 кв. м.
Площадь внутренних перегородок в расчете не участвует, так как через них тепло не уходит – ведь по обе стороны перегородки температура одинакова. Тоже относится и к внутренней двери. Далее вычислив теплопотери каждой из поверхностей, определяют суммарные теплопотери комнаты, которые в данном примере составят: Qсуммарные = 3094 Вт.
Пример 2 Комната под крышей (мансарда)
Характеристики комнаты:
Рассчитаем площади
Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2,4х3,8-0,9х0,6-2х1,6х0,8) = 12 кв. м.
Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1,0х4,2 = 8,4 кв. м.
Площадь боковых перегородок: Sбок.перегор = 2х1,5х4,2 = 12,6 кв. м.
Площадь окон: Sокон = 4х1,6х1,0 = 6,4 кв. м.
Площадь потолка: Sпотолка = 2,6х4,2 = 10,92 кв. м.
Теперь рассчитаем тепловые потери этих поверхностей, при этом учтем, что через пол тепло не уходит (там теплое помещение). Теплопотери для стен и потолка мы считаем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.
Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.
Как видим, теплая комната первого этажа теряет (или потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.
Чтобы такое помещение сделать пригодным для зимнего проживания, нужно в первую очередь утеплять стены, боковые перегородки и окна. Любая ограждающая конструкция может быть представлена в виде многослойной стены, каждый слой которой имеет свое тепловое сопротивление и свое сопротивление прохождению воздуха. Сложив тепловое сопротивление всех слоев, получим тепловое сопротивление всей стены. Также суммируя сопротивление прохождению воздуха всех слоев, поймем, как дышит стена. Идеальная стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 см.
Для объективной картины теплопотерь всего дома необходимо учесть:
Суммировав все теплопотери дома, можно определить, какой мощности генератор тепла (котел) и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, расчеты подобного рода покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.
Рассчитать расход тепла можно и по укрупненным показателям. Так, в одно- и двухэтажных не сильно утепленных домах при наружной температуре –25 °С требуется 213 Вт на один квадратный метр общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – это: при –25 °С – 173 Вт на кв.м. общей площади, а при –30 °С – 177 Вт.
Теплозащита помещения зависит от сопротивления теплопередаче ограждающих конструкций (стен, перекрытий), которые в современных зданиях значительно отличаются одна от другой. Для их изготовления применяют различные материалы; соответственно этому они выполняют специфические функции. Каждому материалу соответствуют свои значения коэффициента теплопроводности и принятая рациональная толщина d, и сопротивления теплопередаче оказываются различными. К ограждающим конструкциям относятся также окна и двери. Их сопротивление теплопередаче существенно меньше, чем прочих конструкций. Дополнительное влияние на теплозащиту оказывает соотношение площадей проемов и сплошных стен.
Насколько значительны теплопотери через поверхности, которые ограждают помещение от наружного воздуха, настолько невелики теплопотери через внутренние конструкции, поэтому теплозащита помещения зависит также от его геометрии и положения в здании. Глубокое помещение с малой поверхностью наружных стен требует меньшего подвода тепла, чем широкое помещение такой же площади с большей поверхностью наружных стен. Угловое помещение дома в верхнем этаже с тремя наружными поверхностями имеет большую потребность в тепле, чем помещение примерно такого же размера, расположенное в середине одного из промежуточных этажей, поэтому при проектировании теплозащиты следует обращать внимание на отношение доли наружных поверхностей к объему помещения.
Теплозащита зависит также от воздухопроницаемости конструкций, которые ограждают помещение от наружного воздуха, а также их теплоаккумулирующей способности.
Стены и перекрытия если
они оштукатурены, характеризуются
очень малой
2.1.2 Теплопотери через оконные проемы
Оконные и балконные заполнения являются неотъемлемой частью фасадов, они составляют порядка 30…45 % площади наружных стен жилых зданий и предназначены для обеспечения необходимой естественной освещенности помещений и возможности контакта с окружающей средой.
Конструкции светопрозрачных ограждений подвержены силовым и не силовым воздействиям: снаружи на них воздействуют ветровые нагрузки, атмосферные осадки, переменные температура и влажность воздуха, солнечная радиация, шум, пыль и водорастворимые химические примеси в атмосферной влаге; изнутри – потоки тепла и пара, шум. Оконные и балконные заполнения также должны вписываться в архитектурный облик всего здания, легко монтироваться, быть ремонтнопригодными.
Установлено, что в зимний период теплопотери через окна жилых зданий составляют порядка 22…30 % (через стены 18…27 %) общих потерь тепла зданием. Это говорит о том, что какой бы хорошей не была дополнительная теплозащита стен, без проведения мероприятия по сокращению теплопотерь через окна, она не даст ожидаемого эффекта.
Согласно «Изменению № 3 СНиП II-3-79** «Строительная теплотехника» требуемое сопротивление теплопередаче окон изменилось не более чем в 1,5 раза (для стен в 2,5…3 раза). Фактически, значения сопротивлений теплопередаче окон зданий опорного жилищного фонда отличаются от нормативных гораздо более, чем в полтора раза. Главной причиной такого отклонения является их воздухопроницаемость, вызванная проникновением холодного воздуха в межстекольную полость окон (соответственно и внутрь помещений), через не плотности и щели в притворах переплетов и фальцев (четвертей со стеклами). Это вызывает усиленную конвекцию воздуха в межстекольной полости и влечет снижение теплозащитной способности, нередко более, чем в три раза по сравнению с новыми нормами.