Основы научно - исследовательской деятельности и перспективы развития теплоэнергетической отрасли

Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 07:36, курс лекций

Описание работы

Трудно назвать отрасль народного хозяйства, в которой не применялась бы тепловая энергия. Обеспечение нормальных микроклиматических условий в помещениях жилых, общественных зданий и зданий промышленного назначения, обеспечение нормального хода технологических процессов в промышленности, обеспечение чистоты атмосферы в помещениях и на рабочих местах — далеко не полный перечень сторон разнообразной деятельности и жизни человека, требующих применения тепловой энергии. Поэтому так остро поставлены вопросы развития техники теплогазоснабжения и вентиляции.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………...5
1. Логистика систем теплогазоснабжения и вентиляции…………………………………………………………….6
2. Проблематика систем теплогазоснабжения и вентиляции…………………………………………………………...13
2.1 Теплопотери в зданиях и сооружениях……………………………..13
2.1.1 Теплопотери через ограждающие конструкции………………….14
2.1.2 Теплопотери через оконные проемы……………………………...21
2.1.3 Теплопотери в системах вентиляции……………………………..26
2.2 Теплопотери в тепловых сетях ……………………………………...27
3 Пути решения проблем теплогазоснабжения и вентиляции…………………………………………………………..29
3.1 Теплозащита зданий и сооружений…………………………………29
3.1.1 Теплоизоляция внешних стен……………………………………..30
3.1.2 Теплоизоляция окон………………………………………………..33
3.1.3 Система вентиляции………………………………………………..38
3.2 Теплозащита тепловых сетей………………………………………...41
4 Энергоэффективность систем теплогазоснабжения и вентиляции………………………………………………………...46
4.1 Методика определения экономической целесообразности применения энергосберегающего мероприятия………………………..47
4.2 Экономия теплоты, воды и электроэнергии в системах водоснабжения жилых микрорайонов…………………………………..48
4.3 Эффективность изоляции стояков системы горячего водоснабжения……………………………………………………………49
4.4 Использование вторичных энергоресурсов для нагрева теплоносителей в системах отопления, вентиляции и кондиционирования воздуха……………………………………………..50
4.5 Сокращение энергопотребления…………………………………….51
4.6 Повышение энергоэффективности теплосетей…………………….51
5 Методология научных исследований………………….53
5.1 Цели и задачи НИР…………………………………………………...53
5.1.1 Организация НИРС…………………………………………………54
5.2 Формы НИР…………………………………………………………...55
5.3 Финансирование НИР………………………………………………..57
5.4 Внедрение и эффективность научных исследовани ……………..59
5.5 Этапы НИР……………………………………………………………62
5.6 Основные методы НИР………………………………………………68
5.6.1 Методы эмпирического исследования…………………………….68
5.6.2 Методы теоретического исследования……………………………73
6. Информационные технологии в теплогазоснабжении и вентиляции……………………….76
6.1 Основные этапы работы с информацией……………………………76
6.1.1 Определение цели и план работы………………………………….76
6.1.2 Сбор информации…………………………………………………..77
6.1.3 Обработка и систематизация информации………………………..79
6.1.4 Интерпретация информации……………………………………….81
6.1.5 Составление информационного отчета…………………………...82
6.2 Культура работы с информацией …………………………………...83
6.2.1 Критерии оценки источников информации………………………83
6.3 Представление и распространение информации…………………...85
6.3.1 Уровни представления информации………………………………87
6.3.2 Каналы распространения информации……………………87
7. Планирование эксперимента………………………………92
8. Обработка результатов эксперимента…………………98
8.1 Предварительная обработка………………………………………….99
8.2 Дисперсия параметра оптимизации………………………………..102
8.3 Проверка однородности дисперсий………………………………..103
8.4 Рандомизация………………………………………………………..105
9. Экология систем теплогазоснабжения и вентиляции………………………………………………………….106
9.1 Технологии в энергетике……………………………………………106
9.2 Защита от шума, инфразвука и вибраций………………………….110
9.2.1 Акустический расчет и методы снижения шума………………..110
9.3 Загрязнение водных ресурсов………………………………………111
9.4 Мероприятия по охране атмосферы………………………………..113
Библиографический список…………………………………………….115

Файлы: 1 файл

КОНСПЕКТ ЛЕКЦИЙ по основам НИР.doc

— 947.50 Кб (Скачать файл)

Тепловая изоляция предусматривается  для линейных участков трубопроводов  тепловых сетей, арматуры, фланцевых  соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки. При выборе материалов теплоизоляционных конструкций трубопроводов, прокладываемых в жилых, общественных и производственных зданиях и проходных тоннелях, следует учитывать требования норм проектирования на эти объекты в части пожарной опасности.

Для изоляции арматуры, сальниковых  компенсаторов и фланцевых соединений следует применять преимущественно  съемные теплоизоляционные конструкции.

В качестве теплоизоляционного слоя в этих конструкциях наибольшее применение в практике находят теплоизоляционные изделия на основе минерального и стеклянного волокна, выпускаемые различными предприятиями по ГОСТ 21880-94, ГОСТ 9573-96, ГОСТ 10499-95 и Техническим условиям (ТУ) производителей.

Эффективными теплоизоляционными изделиями для прокладываемых в каналах трубопроводов тепловых сетей являются цилиндры из минеральной ваты и стекловолокна. Преимуществом импортных изделий является их формостабильность и технологичность при монтаже. Применение формостабильных теплоизоляционных изделий обеспечивает снижение трудозатрат при монтаже теплоизоляции тепловых сетей в каналах.

В конструкциях теплоизоляции  подземных трубопроводов канальной  прокладки с учетом возможного попадания  в конструкцию капельной влаги  рекомендуется применять только гидрофобизированные теплоизоляционные материалы. Для ограничения увлажнения волокнистой теплоизоляции при надземной и подземной канальной прокладке по теплоизоляционному слою устанавливается защитное покрытие из гидроизоляционных материалов. В отечественной практике в конструкциях с минераловатными и стекловатными утеплителями при прокладке в каналах используются стеклопластики по ТУ 6-48-87-92, ТУ 36.16.22-68-95, ТУ 6-48-00204961-14-90, изол, гидроизол, полимерные пленки и штукатурные покрытия. При надземной прокладке применяются преимущественно металлические покрытия из оцинкованной стали и алюминиевых сплавов.

Перспективным теплоизоляционным  материалом для трубопроводов тепловых сетей с температурным графиком 95–70°C в проходных и непроходных  каналах и систем горячего водоснабжения, прокладываемых в технических подпольях и подвалах зданий, является вспененный каучук.

Для трубопроводов тепловых сетей подземной бесканальной прокладки  применяются преимущественно предварительно изолированные в заводских условиях трубы с гидроизоляционным покрытием, исключающим возможность увлажнения изоляции в процессе эксплуатации. В качестве основного теплоизоляционного слоя в конструкциях теплоизолированных трубопроводов бесканальной прокладки по СНиП 2.04.07-86* и СНиП 2.04.14-88 рекомендуется применять армопенобетон (АПБ), пенополимерминерал (полимербетон) и пенополиуретан (ППУ).

Применявшиеся ранее  конструкции на основе битумоперлита, битумовермикулита, битумокерамзита, фенольных пенопластов (ФРП-1, ФЛ) по физико-техническим и эксплуатационным характеристикам уже не отвечают современным требованиям, в частности, нормам плотности теплового потока по изменению № 1 к СНиП 2.04.14-88. Эти материалы могут использоваться при соответствующем технико-экономическом обосновании в условиях, когда отсутствуют указанные выше, эффективные теплоизоляционные материалы.

Трубы с армопенобетонной изоляцией диаметром от 57 до 1 420 мм выпускаются по ТУ 4859-002-03984155-99. Современный  армопенобетон характеризуется  низкой плотностью (200–250 кг/м3) и теплопроводностью (0,05 Вт/(м•К)) при высокой прочности на сжатие (не менее 0,7 МПа). К преимуществам АПБ относятся его негорючесть, высокая температура применения (до 300°C), отсутствие коррозионного воздействия на стальные трубы, паропроницаемость гидрозащитного покрытия и, как следствие, долговечность. Предызолированные трубы с изоляцией из армопенобетона могут применяться во всем диапазоне температур теплоносителя как в водяных, так и в паровых тепловых сетях всех видов прокладки, включая подземную бесканальную, подземную в проходных и непроходных каналах и надземную прокладку.

Предварительно изолированные  в заводских условиях трубы с  тепловой изоляцией на основе ППУ  и защитным покрытием из полиэтилена  высокой плотности по ГОСТ 30732-2001 применяются для тепловых сетей подземной бесканальной прокладки с температурой теплоносителя до 130°C. Теплопроводы оборудованы системой оперативного дистанционного контроля технического состояния теплоизоляции, позволяющей своевременно обнаруживать и устранять возникающие дефекты.

К преимуществам теплопроводов  с ППУ-изоляцией относят низкий коэффициент теплопроводности ППУ (0,032–0,035 Вт/(м•К)), технологичность  при изготовлении и при монтаже  теплопроводов, долговечность при  соблюдении требований монтажа и  эксплуатации.

Ограничения в применении ППУ-изоляции в тепловых сетях определяются допустимой температурой применения (130°C), горючестью, высокой дымообразующей способностью и токсичностью выделяемых при горении компонентов.

Предельная максимальная температура применения 130°C не позволяет использовать ППУ для изоляции трубопроводов водяных тепловых сетей, работающих по температурным графикам 150–70 и 180–70°C и паропроводов. Следует отметить, что ГОСТ 30732-2001 допускает применение ППУ при кратковременном повышении температуры до 150°C.

Пенополиуретан при  испытаниях по ГОСТ 30244, в зависимости  от рецептуры, относится к группам  Г3 и Г4, что ограничивает возможность  его применения для тепловой изоляции трубопроводов тепловых сетей, надземной  прокладки и подземной в проходных и непроходных каналах и тоннелях.  Пенополимерминерал (полимербетон) разработан Институтом ВНИПИЭнер-гопром и более 20 лет применяется в конструкциях тепловой изоляции трубопроводов диаметром до 500 мм, изготавливаемых по ТУ 5768-006-00113537-2001. Характеризуется интегральной структурой, совмещающей функции теплоизоляционного слоя и гидроизоляционного покрытия. Имеет температуру применения до 150°C, при испытаниях на горючесть по ГОСТ 30244 относится к группе Г1.

В соответствии с требованиями СНиП 2.04.14-88 теплоизоляционные материалы, применяемые для тепловой изоляции трубопроводов бесканальной прокладки, должны иметь прочность на сжатие не менее 0,4 МПа.

При бесканальной прокладке  трубопроводов расчетный коэффициент  теплопроводности основного теплоизоляционного слоя в конструкции определяется с учетом возможного увлажнения при эксплуатации. Коэффициент, учитывающий увеличение теплопроводности теплоизоляционного материала при увлажнении, в настоящее время принимается по СНиП 2.04.14-88 и в зависимости от вида теплоизоляционного материала и влажности грунта по ГОСТ 25100 имеет значения в пределах 1,0–1,15. Следует отметить, что значения этих коэффициентов подлежат уточнению с учетом эффективности применяемых в современной практике гидроизоляционных покрытий. Так, для труб с ППУ-изоляцией в оболочке из полиэтилена высокой плотности и системой контроля влажности этот коэффициент может быть принят равным 1 независимо от влажности грунта. Для труб с армопенобетонной изоляцией и паропроницаемым гидроизоляционным покрытием и труб с пенополимерминеральной изоляцией с интегральной структурой, допускающих возможность высыхания теплоизоляционного слоя в процессе эксплуатации, коэффициент увлажнения, вероятно, может быть снижен до значений 1,05 в маловлажных и влажных грунтах и 1,1 в насыщенных водой грунтах по ГОСТ 25100.

При бесканальной прокладке  трубопроводов тепловых сетей не рекомендуется применение теплоизоляционных  конструкций на основе штучных теплоизоляционных  изделий с устройством гидроизоляционного покрытия на месте монтажа для линейных участков трубопроводов.

Практические расчеты  тепловой изоляции трубопроводов в  канале и при бесканальной прокладке  выполняются с удовлетворительной для практики точностью по инженерным методикам, учитывающим термическое  сопротивление теплоизоляционного слоя и термическое сопротивление стенок канала и грунта, сопротивление теплоотдаче на границе теплоизоляции и стенок канала с воздухом в канале. Термическое сопротивление грунта рассчитывается по формуле Форхгеймера, учитывающей теплопроводность грунта в условиях эксплуатации, диаметр теплопровода и глубину его заложения. При двухтрубной прокладке учитывается взаимное тепловое влияние подающего и обратного теплопровода. В практике проектирования тепловых сетей при двухтрубной прокладке трубопроводов одного диаметра толщина теплоизоляционного слоя обратного трубопровода с учетом монтажных требований принимается равной толщине теплоизоляции подающего трубопровода.

Экономически оптимальная  толщина теплоизоляционного слоя для  заданного типа прокладки определяется по минимуму суммы капитальных затрат на устройство изоляции и эксплуатационных расходов с учетом стоимости используемых материалов и тепловой энергии в конкретном регионе. Стоимостные показатели рекомендуемых к применению теплоизоляционных материалов являются одним из определяющих факторов при оценке их сравнительной технико-экономической эффективности.

 

4 Энергоэффективность систем теплогазоснабжения  и вентиляции

 

В настоящее время  объем мирового потребления энергии  непрерывно и быстро возрастает, что является следствием процесса индустриализации, происходящего в большинстве государств, роста населения, увеличения энергозатрат на добычу природных ресурсов и работу транспорта, а также на повышение плодородия почв и др., в результате чего быстро сокращаются имеющиеся запасы нефти и газа во всем мире.

Несмотря на значительное развитие топливодобывающей промышленности в нашей стране, топливный баланс ее в течение многих лет является весьма напряженным: опережающими темпами  растет потребность в топливе и часто оно расходуется расточительно.

Важность решения этой трудной задачи имеет первостепенное значение для народного хозяйства  и потому, что стоимость топлива  в нашей стране весьма повысилась. Одной из причин этого удорожания явилось несоответствие между потребностью в топливно-энергетических ресурсах в европейской части и на Урале (до 80% их потребления в стране) и их запасами в этих регионах (менее 10% основных запасов ресурсов). В результате около 40% всех перевозок с востока на запад приходится на топливо.

В связи с перечисленными негативными явлениями в энергоснабжении  необходимо, чтобы максимально возможное  снижение затрат энергии на работу систем теплоснабжения и вентиляции зданий было одной из основных задач, решаемых при проектировании и эксплуатации этих систем. Учитывая, что на эти цели сейчас в стране расходуется около 35% всего добываемого твердого и газообразного топлива, результаты энергосбережения здесь могут быть весьма значительными.

Однако проектировщики должны знать, что экономия энергии не может быть самоцелью: целесообразность осуществления любого энергосберегающего мероприятия прежде всего должна быть экономически выгодна с народнохозяйственной точки зрения. В конечном счете устанавливают, что для государства более выгодно – осуществление такого мероприятия или затраты на соответствующее дополнительное развитие топливодобывающей промышленности. В первую очередь следует предусматривать такие мероприятия, для осуществления которых не требуется или почти не требуется капитальных вложений.

Далее изложена целесообразность применения ряда технических предложений, позволяющих снизить расход тепловой или электрической энергии при  работе систем отопления и вентиляции.

 

4.1 Методика  определения экономической целесообразности применения энергосберегающего мероприятия

 

Различают два типа энергосберегающих  мероприятий:

а) мероприятия, непосредственно  связанные с работой систем отопления, вентиляции и кондиционирования  воздуха: повышение уровня теплозащиты  зданий различного назначения, совершенствование герметизации и тепловой изоляции технологического оборудования, совершенствование технологических процессов, использование вторичных энергоресурсов для технологических нужд. Применение энергосберегающих мероприятий этого вида всегда приводит к уменьшению мощности систем отопления, вентиляции и кондиционирования воздуха;

б) мероприятия, снижающие  затраты тепловой или электрической  энергии при работе этих систем; повышение КПД котельных установок, автоматизации и диспетчеризация  работы систем, совершенствование их проектных решений, использование вторичных энергоресурсов для нагрева приточного воздуха или воды и др.

При проектировании новых  или реконструкции действующих  систем отопления, вентиляции и кондиционирования  воздуха могут решаться три типа технико-экономических задач.

  1. Имеется только один вариант энергосберегающего решения и его сопоставляют, с точки зрения экономической эффективности, с «базовым» вариантом, не предусматривавшим энергосберегающих мероприятий.
  2. Могут быть применены несколько энергосберегающих мероприятий (или одно, но с различными количествами сберегаемой энергии при разных режимах работы); все они сопоставляются по величине достигаемого экономического эффекта между собой и с «базовым» вариантом; применению подлежит экономически наиболее целесообразное мероприятие.
  3. Выявляют экономически оптимальный вариант решения, т.е. лучший из всех возможных в принятых условиях.

При сопоставлении вариантов  энергосберегающих решений необходимым  является соблюдение условий их сопоставимости: по функциональному назначению – режиму функционирования и мощности объекта, источнику утилизируемой теплоты; по времени производства затрат и получения эффекта; ценам, определяющим эти затраты и эффект; методам исчисления стоимости показателей, принятых в расчетах; используемым при проектировании энергосберегающих мероприятий нормам, правилам и техническим условиям; по условиям эксплуатации; по степени детализации проектных разработок сопоставляемых энергосберегающих мероприятий.

 

4.2 Экономия теплоты, воды и электроэнергии в системах водоснабжения жилых микрорайонов

 

Несмотря на то, что  при эксплуатации централизованных систем холодного и горячего водоснабжения  от ЦТП нередко возникают жалобы населения на периодическое прекращение  подачи воды на верхние этажи зданий или на низкую температуру горячей воды (вследствие нарушения гидравлического режима), в этих же системах наблюдается значительный перерасход воды, теплоты и электроэнергии. Основной причиной перебоев водоснабжения является недостаточный напор подкачивающей установки, а в системах горячего водоснабжения, кроме того, увеличенное сопротивление водонагревателей и перегрузка начальных (общих) участков сети из-за гидравлической разрегулировки системы.

Информация о работе Основы научно - исследовательской деятельности и перспективы развития теплоэнергетической отрасли