Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 12:31, реферат
Генераторная установка состоит из электрогенератора и регулятора напряжения. Они, вместе с элементами контроля работоспособности и защиты от возможных аварийный режимов, образуют систему электроснабжения автомобиля.
Генераторная установка обеспечивает питанием электропотребители, включенные в бортовую сеть автомобиля, и заряжает его аккумуляторную батарею при работающем двигателе.
Даже на холостом ходу двигателя генератор должен развивать мощность, достаточную для электропитания наиболее важных потребителей. В мировой практике генераторные установки на холостом ходу двигателя развивают 40-50% от номинальной мощности.
Выпрямитель содержит для трехфазной системы шесть силовых полупроводниковых диодов, три из которых VD1, VD3, VD5 соединены с выводом “+”генератора, а три - VD2, VD4, VD6 - с выводом “-” (“массой”). Однако стремление повысить мощность генератора привело к увеличению числа диодов выпрямителя до восьми и применению дополнительного плеча выпрямителя, на диодах VD7, VD8, показанного на рис. 3.1 пунктиром
Такая схема выпрямителя может иметь место только при соединении обмоток статора в “звезду”, так как дополнительное плечо запитывается от “нулевой” точки “звезды”. Подключение обмотки возбуждения к собственному выпрямителю на диодах VD9 - VD11 препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля.
Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не .пропускают ток при обратном напряжении.
По графику фазных напряжение (рис. 3.1) можно определить, какие диоды открыты, какие закрыты в данный момент, времени. Фазное напряжение Uф1 действует в обмотке первой фазы, Uф2 второй, Uф3 -.третьей. Эти напряжения изменяются по кривым, близким к синусоиде, и в одни моменты времени они положительны, в другие отрицательны.
Если, положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее, то, например, для момента времени t1, когда напряжение второй фазы отсутствует, первой фазы - положительно, а третьей - отрицательно, направление напряжений фаз, соответствует стрелкам на рис. 3.1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VD1, VD4. Рассмотрев любые другие моменты времени, легко убедиться, что диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление - от вывода “+” генераторной установки к её выводу “-”, т.е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленном током эту обмотку. В выпрямитель обмотки возбуждения входят также 6 диодов, но три из них – VD2, VD4, VD6 - общие с силовым выпрямителем. Ток в обмотке возбуждения значительно меньше, чем ток отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9 - VD11 применяются малогабаритные слаботочные диоды, рассчитанные на ток не более 2 А.
Плечо выпрямителя, содержащее диоды VD7, VD8, вступает в работу только в том случае, если фазные напряжения генератора отличаются от синусоиды, что и имеет место в реальных генераторах. Напряжение любой формы можно представить в виде суммы синусоид, которые называются гармоническими составляющими или гармониками - первой, частота которой совпадает с частотой фазного напряжения, и высших, главным образом третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник, первой и третьей, показано на рис. 3.2.
Из электротехники известно, что в линейном напряжении, т.е. в том напряжении, которое проводами подводится к выпрямителю и выпрямляется, третья гармоника отсутствует: Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т.е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимно уничтожают друг друга в линейном напряжении.
Таким образом, третья гармоника напряжения в фазном напряжении присутствует, а в линейном - нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения, не может быть использована потребителем. Чтобы потребители могли использовать эту мощность, добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т.е. к точке, где сказывается действие фазного напряжения. Таким образом, диоды VD7, VD8 выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает номинальную мощность генератора.
Kaк видно на рис. 3.1, выпрямленное напряжение носит пульсирующий характер. Применение дополнительного плеча на диодах VD7, VD8 усугубляет глубину пульсации. Однако наличие аккумуляторной батареи, которая является своеобразным фильтром, сглаживает напряжение в бортовой сети автомобиля. При этом ток в самой батарее пульсирует.
3.2. Принцип действия регулятора напряжения
Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды.
Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки, от аварийных режимов и перегрузки, автоматически включать, в бортовую сеть цель обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.
Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами - частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение, генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение. Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.
Блок-схема регулятора напряжения представлена на рис. 3.3. Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм, который в элементе сравнения сравнивается с эталонным значением Uэт.
Если величина Uизм отличается от эталонной величины Цэт на выходе измерительного элемента появляется сигнал u0, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.
Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединении его в схему растет.
Чувствительным элементом
Поскольку вибрационные и контактно-транзисторные регуляторы представляют лишь исторический интерес, а в отечественных и зарубежных генераторных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 3.4).
Регулятор 2 на схеме работает в комплекте с генератором 1, имеющим дополнительный выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.
Транзисторы же пропускают
ток между коллектором и
Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1, R2. Пока напряжение генератора невелико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вывода Д поступает в базовую цепь транзистора VT2, он открывается, через его переход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, который открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания. Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния, Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1.
При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VT3 на “массу”. Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VD2, транзистор VT1, открывается составной транзистор VT2, VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т.д., процесс повторяется.
Таким образом регулировка напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис. 3.5. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла - увеличивается.
В схеме регулятора по рис. 3.4 имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью.
В этом случае ток обмотки возбуждения может замыкаться через этот диод, и опасных всплесков напряжения не происходит. Поэтому диод VD2 называется гасящим. Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD2 резко уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Это благотворно сказывается на качестве напряжения генераторной установки. Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе.
Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо ускоряют переключения транзисторов.
В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзисторам, следовательно, снижая потери мощности в нем и его нагрев.
Из рис. 3.4 хорошо видна роль лампы контроля работоспособного состояния генераторной установки HL.
При неработающем двигателе
внутреннего сгорания замыкание
контактов выключателя
После запуска двигателя, на выводах генератора Д и “+” появляется практически одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генераторной установки или обрыве приводного ремня. Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбуждения, то лампа HL загорится.
Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры - понижалось.