Автор работы: Пользователь скрыл имя, 03 Февраля 2013 в 19:17, реферат
Цифровая обработка сигналов (ЦОС) в последние годы все шире используется в радиоприемных устройствах. Прогресс в этой области вызван достижениями в микроэлектронике, позволившими создать вычислительные средства, обладающие высоким быстродействием, малыми габаритами, весом и энергопотреблением. Интерес к цифровой обработке сигналов вызван тем, что на ее основе можно создавать устройства с характеристик
Перейдем теперь к рассмотрению обработки видеосигнала. Здесь наиболее распространенной является обработка его мгновенных значений. Однако в некоторых случаях (например, в радионавигации и в технике передачи дискретных сообщений) применяют также фазовую обработку. Такой способ применим при относительно высоком отношении сигнал-шум на входе АЦП.
Существенное значение имеет
выбор числа уровней
Многоуровневое квантование применяется также тогда, когда мощность сигнала значительно больше мощности шума, причем недопустимо заметное ухудшение отношения сигнал-шум за счет квантования.
Отметим, что в последние
годы широкое распространение
2. Элементы цифровых РПУ
Основными элементами цифровых радиоприемных устройств можно считать, учитывая изложенное выше, такие элементы как цифровые фильтры, цифровые детекторы, устройства цифровой индикации и устройства контроля и управления ЦРПУ. Рассмотрим их более подробно.
2.1 Цифровые фильтры
В общем случае в линейном стационарном цифровом фильтре k-й выходной отсчет y(k) (в момент времени t=kΔ) линейно зависит от k-го входного отсчета x(k) и некоторого количества предшествующих отсчетов x( ) ( <k), а также от некоторого количества выходных отсчетов y( ) ( <k):
Числа L и M в разностном уравнении (1) называют соответственно относительной памятью ЦФ по входу и выходу. ЦФ с памятью по входу называются рекурсивным, а без такой памяти нерекурсивными.
Алгоритмы работы различных ЦФ отличаются параметрами Q и M и набором коэффициентов {aℓ} и {bi}. Рассмотрим сначала реализацию нерекурсивных ЦФ, когда все bi=0 (т.е. М=0).
В этом случае разностное уравнение (1) принимает вид:
Структурная схема ЦФ, реализующая алгоритм (2) приведена на следующем рисунке:
Рисунок 6.
Структурная схема построения нерекурсивного (трансверсального) ЦФ
Основными элементами ЦФ являются блоки задержки отсчетных значений на один тактовый интервал (условно обозначены символом z-1), а также масштабные блоки aq (усилители). Сигналы с последних собираются в сумматор, образуя входной отсчет. Посредством разностного уравнения (2) можно построить лишь ЦФ с финитной (конечной) импульсной характеристикой {g(0), g(1)…g(Q)}.Если на вход схемы трансверсального типа подать единичный импульс (1,0,0,0,…), то по определению отклик ЦФ есть его импульсная характеристика g(t). Это возможно лишь при условии, что в трансверсальном ЦФ отсчеты импульсной характеристики g(q) совпадают с коэффициентами aℓ, ℓ=0,1,2,…Q.
Взяв Z-преобразование от левой и правой частей (2) получаем:
Тогда системная функция трансверсального фильтра будет иметь вид:
Равенство (3) определяет дробно-рациональную функцию от Z. Она имеет L-кратный полюс при Z=0 и L нулей, определяемых корнями полинома числителя формулы (3). Последние зависят от отсчетов импульсной характеристики ЦФ g(ℓ)=aℓ. Частотная характеристика трансверсального цифрового фильтр согласно (3) и (1) имеет вид:
Рассмотрим теперь работу ЦФ, работающего по общему алгоритму (1).