Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 21:14, реферат
Согласно российскому законодательству1, несостоятельность (банкротство) - признанная арбитражным судом или объявленная должником неспособность должника в полном объеме удовлетворить требования кредиторов по денежным обязательствам и (или) исполнить обязанность по уплате обязательных платежей.
Дисциплина: «Информационные системы в экономике»
Учебно-методическое указание для проведения практических занятий по теме:
«Анализ риска банкротства предприятия»
Авторы:
Калайдин Е.Н. д.ф.-м.н. профессор кафедры Теоретической экономики
Согласно российскому законодательству1, несостоятельность (банкротство) - признанная арбитражным судом или объявленная должником неспособность должника в полном объеме удовлетворить требования кредиторов по денежным обязательствам и (или) исполнить обязанность по уплате обязательных платежей.
Задача определения степени риска банкротства является актуальной как для собственников предприятия, так и для его кредиторов. Поэтому вызывают интерес любые научно обоснованные методики оценки риска банкротства.
Степень риска банкротства – это комплексный показатель, характеризующий как финансовое положение предприятия, так и качество управления им, которое, в конечном счете, получает свое выражение в финансовом эквиваленте, но не исчерпывается одними лишь финансовыми последствиями.
Так, безалаберное одалживание средств у банков рано или поздно приведет к тому, что объем заемных средств превысит реальные возможности предприятия по расчетам с кредиторами. Это означает потерю финансовой устойчивости, которая легко измерима по балансу фирмы. Но корень проблемы находится не в самих финансах, а в неадекватных способах управления ими. Финансы – только зеркало проблемы, которую необходимо решать зачастую даже не финансовыми средствами (например – уволить некомпетентного менеджера).
В практике финансового анализа очень хорошо известен ряд показателей, характеризующих отдельные стороны текущего финансового положения предприятия. Сюда относятся показатели ликвидности, рентабельности, устойчивости, оборачиваемости капитала, прибыльности и т.д. По ряду показателей известны некие нормативы, характеризующие их значение положительно или отрицательно. Например, когда собственные средства предприятия превышают половину всех пассивов, соответствующий этой пропорции коэффициент автономии больше 0.5, и это его значение считается "хорошим" (соответственно, когда оно меньше 0.5 - "плохим"). Но в большинстве случаев показатели, оцениваемые при анализе, однозначно нормировать невозможно. Это связано со спецификой отраслей экономики, с текущими особенностями действующих предприятий, с состоянием экономической среды, в которой они работают.
Тем не менее, любое заинтересованное положением предприятия лицо (руководитель, инвестор, кредитор, аудитор и т.д.), далее именуемое лицом, принимающим решения (ЛПР), не довольствуется простой количественной оценкой показателей. Для ЛПР важно знать, приемлемы ли полученные значения, хороши ли они, и в какой степени. Кроме того, ЛПР стремится установить логическую связь количественных значений показателей выделенной группы с риском банкротства. То есть ЛПР не может быть удовлетворено бинарной оценкой "хорошо - плохо", его интересуют оттенки ситуации и экономическая интерпретация этих оттеночных значений. Задача осложняется тем, что показателей много, изменяются они зачастую разнонаправленно, и поэтому ЛПР стремится "свернуть" набор всех исследуемых частных финансовых показателей в один комплексный, по значению которого и судить о степени благополучия ("живучести") фирмы и о том, насколько далеко или близко предприятие отстоит от банкротства.
Успешный анализ риска банкротства предприятия возможен лишь на основе следующих основных предпосылок:
Все перечисленное говорит о том, что эксперт-аналитик должен составить представление о том, что является «хорошим» или «плохим» в масштабе отрасли, к которой относится данное предприятие.
Так, например, инвестор в ценные бумаги должен следить за тем, как ключевое отношение цены акции к доходам по ней для предприятия соотносится с тем же для сектора экономики, к которому оно относится. Такая информация содержится практически на всех крупных американских финансовых Интернет-сайтах, а кое-где, например, на сайте2, проводится сопоставление двух уровней показателей и делается заключение о том, в какой качественной степени эти уровни отстоят друг от друга.
Применительно к развитым странам мира проблема снабжения заинтересованных лиц полной и обновляемой экономической статистикой успешно решена. Так3, 9000 американских акционерных обществ классифицированы и отнесены к 9 отраслям и 31 индустриальной экономической группе. По каждой из этих групп доступна информация по широкому спектру финансовых показателей деятельности группы, полученных как средневзвешенное по всем предприятиям, входящим в эту группу. Такая масштабная база для сопоставительного анализа позволяет ЛПР принимать уверенные решения. В России подобная работа только начинается, поэтому при классификации показателей следует опираться не сколько на статистику, сколько на мнение экспертов, располагающих многолетним фактическим опытом финансового анализа предприятий.
Рассмотрим теперь, как указанные проблемы анализа разрешаются в развитых странах мира.
Наиболее широко распространенным подходом к анализу риска банкротства предприятия является подход Альтмана4, который состоит в следующем:
(1)
где Ki - функции показателей бухгалтерской отчетности, ai - полученные в результате анализа веса.
Отмеченный подход, разработанный в 1968 г. Эдвардом Альтманом, был применен им самим в том же году применительно к экономике США. В результате появилось широко известная формула:
(2)
где:
К1 = собственный оборотный капитал/сумма активов;
К2 = нераспределенная прибыль/сумма активов;
К3 = прибыль до уплаты процентов/сумма активов;
К4 = рыночная стоимость собственного капитала/заемный капитал;
К5 = объем продаж/сумма активов.
Интервальная оценка Альтмана: при Z<1.81 – высокая вероятность банкротства, при Z>2.67 – низкая вероятность банкротства.
Позже (1983) Альтман распространил свой подход на компании, чьи акции не котируются на рынке. Соотношение (2) в этом случае приобрело вид
. (3)
Здесь К4 - уже балансовая стоимость собственного капитала в отношении к заемному капиталу. При Z<1.23 Альтман диагностирует высокую вероятность банкротства.
Подход Альтмана, называемый также методом дискриминантного анализа, был впоследствии применен самим Альтманом и его последователями в ряде стран (Англия, Франция, Бразилия и т.п.). Так, например Тоффлер и Тисшоу5, для случая Великобритании получили следующую зависимость:
(4)
где
К1 = прибыль от реализации /краткосрочные обязательства;
К2 = оборотный капитал/сумма обязательств;
К3 = краткосрочные обязательства / сумма активов;
К4 = объем продаж/сумма активов.
При Z>0.3 исследователи признают вероятность банкротства низкой.
Приведем еще ряд аналогичных моделей:
Модель Лиса:
(5)
где
К1 = оборотный капитал/сумма активов;
К2 = прибыль от реализации/сумма активов;
К3 = нераспределенная прибыль/ сумма активов;
К4 = рыночная стоимость собственного капитала/заемный капитал.
При Z<0.037 – высокая вероятность банкротства.
Модель Чессера:
(6)
где
К1 = быстрореализуемые активы/сумма активов;
К2 = объем продаж/ быстрореализуемые активы;
К3 = валовая прибыль/ сумма активов;
К4 = заемный капитал / сумма активов;
К5 = основной капитал / чистые активы;
К6 = оборотный капитал / объем продаж.
При P>0.5 – высокая вероятность банкротства.
Первым российским опытом применения подхода Альтмана является сравнительно недавно разработанная модель Давыдовой-Беликова6:
(8)
где
К1 = оборотный капитал/сумма активов;
К2 = чистая прибыль/собственный капитал;
К3 = объем продаж/ сумма активов;
К4 = чистая прибыль/себестоимость.
При: Z<0 - вероятность банкротства максимальная (0.9 – 1), 0<Z<0.18 – вероятность банкротства высокая (0.6 – 0.8), 0.18 < Z < 0.32 – вероятность банкротства средняя (0.35-0.5), 0.32 < Z < 0.42 – вероятность банкротства низкая (0.15-0.20), Z >0.42 - вероятность банкротства незначительна (до 0.1).
Сопоставление данных, полученных для ряда стран, показывает, что веса в Z - свертке и пороговый интервал [Z1 , Z2] сильно разнятся не только от страны к стране, но и от года к году в рамках одной страны (можно сопоставить выводы Альтмана о положении предприятий США за 10 лет анализа). Получается, что подход Альтмана не обладает устойчивостью к вариациям в исходных данных. Статистика, на которую опирается Альтман и его последователи, возможно, и репрезентативна, но она не обладает важным свойством статистической однородности выборки событий. Одно дело, когда статистика применяется к выборке радиодеталей из одной произведенной партии, а другое, - когда она применяется к фирмам с различной организационно-технической спецификой, со своими уникальными рыночными нишами, стратегиями и целями, фазами жизненного цикла и т.д. Здесь невозможно говорить о статистической однородности событий, и, следовательно, допустимость применения вероятностных методов, самого термина "вероятность банкротства" ставится под сомнение7.
В ходе использования методов Альтмана часто возникают передержки. В переводной литературе по финансовому анализу, а также во всевозможных российских компиляциях часто встретишь формулу Альтмана образца 1968 года, и ни слова не говорится о допустимости этого соотношения в анализе ожидаемого банкротства. С таким же успехом в формуле Альтмана могли бы стоять любые другие веса, и это было бы столь же справедливо в отношении российской специфики, как и исходные веса.
Разумеется, мы вправе ожидать, что чем выше, скажем, уровень финансовой автономии предприятия, тем дальше оно отстоит от банкротства. Это же выражают все монотонные зависимости, полученные на основе подхода Альтмана. Но сколь в действительности велика эта дистанция – вопрос этот, скорее всего, не будет решен даже тогда, когда появится полноценная представительная статистика российских банкротств.
Подход Альтмана имеет право на существование, когда в наличии (или обосновываются модельно) однородность и репрезентативность событий выживания/банкротства. Но ключевым ограничением этого метода является даже не проблема качественной статистики. Дело в том, что классическая вероятность - это характеристика не отдельного объекта или события, а характеристика генеральной совокупности событий. Рассматривая отдельное предприятие, мы вероятностно описываем его отношение к полной группе. Но уникальность всякого предприятия в том, что оно может выжить и при очень слабых шансах, и, разумеется, наоборот. Единичность судьбы предприятия подталкивает исследователя присмотреться к предприятию пристальнее, расшифровать его уникальность, его специфику, а не "стричь под одну гребенку"; не искать похожести, а, напротив, диагностировать и описывать отличия. При таком подходе статистической вероятности места нет. Исследователь интуитивно это чувствует и переносит акцент с прогнозирования банкротства (которое при отсутствии полноценной статистики оборачивается гаданием на кофейной гуще) на распознавание сложившейся ситуации с определением дистанции, которая отделяет предприятие от состояния банкротства.
В этом направлении как раз и развиваются подходы, которые можно условно назвать «качественными». Они основываются на изучении отдельных характеристик, присущих бизнесу, развивающемуся по направлению к банкротству. Если для исследуемого предприятия характерно наличие таких характеристик, можно дать экспертное заключение о неблагоприятных тенденциях развития. При этом надо отметить, что при анализе рассматриваются не только финансовые показатели, но и показатели, характеризующие уровень менеджмента на предприятии.
Одним из «качественных» подходов является подход Аргенти (цитируется по8). Суть его в следующем.
Исследование в рамках подхода начинается с предположений, что (а) идет процесс, ведущий к банкротству, (б) процесс этот для своего завершения требует нескольких лет и (в) процесс может быть разделен на три стадии:
Недостатки. Компании, скатывающиеся к банкротству, годами демонстрируют ряд недостатков, очевидных задолго до фактического банкротства.