Автор работы: Пользователь скрыл имя, 08 Января 2013 в 19:50, курсовая работа
Эксплуатация нефтяных скважин ШСНУ наиболее распространенный способ добычи нефти, охватывающий более 70 % действующего фонда скважин в ООО НГДУ “Октябрьскнефть”. Поэтому надежность эксплуатации этих установок в различных геолого-физических условиях скважины во многом будет определять показатели процессов добычи нефти.
Основными направлениями работ по повышению эффективности процессов добычи нефти с применением ШСНУ в ООО НГДУ “ОН” в последние годы являются:
Введение
1. Геолого-промысловая характеристика Серафимовского месторождения
1.1 Общие сведения о районе
1.2 Орогидрография района
1.3 Характеристика нефтегазоносных пластов
1.4 Характеристика пластовых флюидов
1.4.1 Свойства нефти
1.4.2 Свойства пластовой воды
1.4.3 Свойства и состав газа
1.5 Состояние разработки месторождения
2. Условия работы ШСНУ в НГДУ “Октябрьскнефть”
2.1 Особенности оборудования ШСНУ
2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”
3. Теория подбора оборудования и режима работы ШСНУ
3.1 Расчет потерь хода плунжера и длины хода полированного штока
3.2 Нагрузки, действующие на штанги и трубы
4. Динамометрирование и результаты исследований
5. Выбор штанговой насосной установки и режима ее работы с учетом деформации штанг и труб
5.1 Исходные данные
5.2 Расчеты
6. Безопасность и обслуживание ШСНУ в ООО НГДУ ”Октябрьскнефть”
6.1 Основные опасности и вредности возникающие в процессе эксплуатации месторождений в ООО НГДУ “ Октябрьскнефть”
6.2 Техника безопасности при эксплуатации ШСНУ
6.3 Обеспечение электробезопасности
На динамограмме 28 показан случай, когда разъедены стыковые соединения, расположенные в таких местах, что плунжер в нижнем и в верхнем положениях перекрывает их, а утечка происходит на середине хода плунжера. На динамограмме при этом в середине хода получается провал (показан стрелками).
Следует отметить, что в настоящее время все шире используют телеконтроль за работой штанговых скважинных насосов. Анализ многочисленных телединамограмм показал, что при четкой налаженной работе датчиков по ним можно определить такие явления, как влияние газа, применение уровня, обрыв или отворот штанг, заклинивание плунжера, низкую и высокую посадку насоса, выход из строя клапанов и др. В связи с отсутствием нулевой линии невозможно определить величину пропуска жидкости в приемной и нагнетательной частях насоса, высоту динамического уровня, степень влияния газа, течь в трубах, коэффициент наполнения насоса и потерю хода ∆S, а также производить расчет нагрузок, необходимых для подсчета напряжения в штангах /7/. Поэтому при исследовательских работах необходимо обязательно пользоваться гидравлическим динамографом.
5. Выбор штанговой насосной установки и режима ее работы с учетом деформации штанг и труб
5.1 Исходные данные
Глубина скважины L0, м……………………… ……………..…….…1600
Диаметр эксплуатационной колонны Dс, м…………… ……………0,150
Планируемый дебит жидкости Qж пл, м3/сут…………………........….26,2
Объемная обводненность жидкости В, доля единицы… …………...…..0
Плотность дегазированной нефти ρн дег, кг/м3………………….……..850
Плотность пластовой воды ρв, кг/м3………………… ………….……1100
Плотность газа (при стандартных условиях) ρг о, кг/м3……………....1,4
Газовый фактор G0, м3/м3……………………………………….......…
Вязкость нефти νн, м2/с……………………………………………….3∙10-6
Вязкость воды νв, м2/с…………………………………………..………10-6
Давление насыщения нефти газом Рнас, МПа……………………….…..9
Пластовое давление Рпл , МПа…………………………….………….…11
Устьевое давление Ру, МПа……………………………………………1,53
Средняя температура в стволе скважины, К………………………….303
Коэффициент продуктивности Кпр, м3/(с∙Па)……………….…..1,02∙10-10
Объемный коэффициент нефти при давлении насыщения bнас…….1,16
.
5.2 Расчеты
Строим кривую распределения давления по стволу скважины при Рзаб=8,03 МПа (рисунок 4).
Рисунок 4 - Кривые распределения давления по стволу скважины (1) и колонне НКТ (2).
4. Глубину спуска насоса выбираем, исходя из оптимального давления на приеме, примерно равного 2,6 МПа. По графику (рисунок 4) находим, находим что при Lн=900 м Рпр=2,56 МПа. Эту глубину и выбираем в качестве глубины спуска.
5. По диаграмме А. Н. Адонина выбираем диаметр насоса, который для Lн=900 м и Qж пл=26,2 м3/сут равен 38 мм. По таблице IV.25 /6/ выбираем насос НСВ1-38, пригодный для неосложненных условий эксплуатации (с обычными клапанами), II группы посадки с зазором δ=100 мкм (10-4) в плунжерной паре.
Таблица 13
Характеристика насосных штанг
Показатели |
Диаметр штанг dшт, мм | |||
16 |
19 |
22 |
25 | |
Площадь поперечного сечения штанги, см2 Вес 1м штанг в воздухе, Н Наружный диаметр муфты, мм |
2,01 17,5 38 |
2,83 23,5 42 |
3,80 31,4 46 |
4,91 41,0 55 |
6. Колонна НКТ для насоса НСВ1-38 в соответствии с таблицей IV.25 /6/ выбирается с условным диаметром 73 мм и толщиной стенки 5,5 мм. Для труб этого размера Dт.н=0,073 м; Dт.в=0,062 м; fтр=11,6*10-4 м2.
7. Для давления рпр определим объемный коэффициент нефти:
количество растворенного газа:
м3/м3;
расход свободного газа:
м3/с;
подачу жидкости:
м3/с;
8. Коэффициент сепарации газа:
Трубный газовый фактор:
м3/м3.
Очевидно, Гн о=Gн о.
Новое давление насыщения МПа.
9. Определим давление на выкиде насоса МПа (рисунок 4)
Определим среднюю плотность смеси в колонне НКТ:
кг/м3.
10. Определим максимальный
перепад давления в клапанах
при движении через них продукц
Согласно таблице IV.1 /6/, dкл в=25 мм, dкл н=18 мм. Предварительно определим расход смеси через всасывающий клапан:
м3/с,
м3/с.
Максимальная скорость движения смеси в седле всасывающего клапана и число Рейнольдса:
м/с;
По графику (см. рисунок IV.1 /6/) определяем коэффициент расхода клапана при Rе=2,8*104 Мкл=0,4. Перепад давления на всасывающем клапане
Н/м2=0,03 МПа.
Аналогично определим перепад давления на нагнетательном клапане. Поскольку рвык>р’нас, то Q’г(рвык)=0 и Qкл=Qж(р’нас),
м3/с;
м3/с;
Mкл=0,4 (см. рисунок IV.1 /6/),
Н/м2=0,05 МПа.
Тогда давление в цилиндре насоса при всасывании рвс ц и нагнетании рнагнц и перепад давления, создаваемый насосом ∆рнас, будет следующее:
рвсц=рпр-∆ркл в=2,56-0,03=2,53 МПа;
рнагц=рвык+∆ркл н=7,94+0,05=7,99 МПа;
∆рн=рнагн ц-рпр=7,99-2,56=5,43 МПа.
11. Определим утечки в зазоре плунжерной пары:
Проверяем характер течения в зазоре:
Следовательно, режим течения жидкости в зазоре ламинарный.
12. Определим коэффициент наполнения:
Установим предварительно Qсм (рвсц):
Qж(рвсц)≈Qж(рпр)≈3,39∙10-4 м3/с;
м3/м3;
м3/с;
Qсм=(3,39+1,95)∙10-4=5,34∙10-4 м3/с;
Проверяем условие рвсц<р’нас. Поскольку оно выполняется, то в цилиндре во время хода всасывания имеется свободный газ. Тогда коэффициент наполнения ηнап определяем в следующем порядке:
Коэффициент утечек:
Газовое число:
рнагнц=7,99 МПа>р’нас=5,5 МПа. Следовательно, коэффициент наполнения:
В расчете принято bж(р)=bн(р);
Определим коэффициент наполнения также для неравновесного характера процесса растворения газа:
Определим коэффициент наполнения также для процесса неравновесного и при полной сегрегации фаз:
По формуле И.М. Муравьева:
Вероятные средние значения коэффициента наполнения и соответствующие максимальные абсолютные отклонения δi составят соответственно:
Следовательно, значения коэффициента наполнения насоса, определенные для различных схем процесса выделения и растворения газа и сегрегации фаз, лежат в довольно узком диапазоне значений: ηнап=0,59-0,62. Погрешность схематизации не превышает 0,02.
Для дальнейших расчетов принимаем ηнап=0,60.
Коэффициент ηрг, учитывающий усадку нефти:
13. Определим подачу насоса Wнас, обеспечивающую запланированный дебит нефти при получившемся коэффициенте наполнения:
м3/с.
При известном диаметре насоса можно определить необходимую скорость откачки, пользуясь, например, формулой:
м/мин.
По диаграмме А. Н. Адонина для заданного режима можно использовать станки-качалки 6СК6-1,5*1600 или 6СК6-2,1*2500.
Первый из них не подходит, поскольку не обеспечит требуемую скорость откачки (для этого станка snmax=22 м/мин). Поэтому следует ориентироваться на параметры станка СК6-2,1-2500 по ГОСТ 5866-76, параметры которого аналогичны параметрам станка-качалки 6СК6-2,2*2500.
Выбираем sпл=2 м; n=15 кач/мин или N=0.25 1/c.
14. При выборе конструкции
штанговой колонны, вначале
Предварительно установим значения следующих коэффициентов (необходимые размеры штанг приведены в таблице 13):
; ; ;
;
Площадь плунжера насоса:
м2.
Гидравлическая нагрузка:
Н.
Коэффициенты динамичности при ходе вверх mв и вниз mн, а также плавучести штанг Карх и вспомогательный множитель М:
Сила гидравлического трения, действующая на единицу длины колонны:
Н/м,
Н/м.
Далее определим силы сопротивлений, сосредоточенные у плунжера:
Н,
Н.
Вес “тяжелого низа” принимаем равным сумме сил сопротивления, сосредоточенных у плунжера:
Н.
Далее установим длины нижней l1 и верхней l2 ступеней.
Последовательно отметим, что qтр 1 и qтр 2 составляют весьма незначительную часть от веса единицы длины штанг qшт 1 и qшт 2. Поэтому при расчете можно не учитывать qтр 12:
м.
м;
Оценим необходимую длину “тяжелого низа”, если его выполнить из штанг диаметром 25 мм:
м, или 1,6% от общей длины колонны.
Таким образом, расчетным путем была получена конструкция колонны диаметром 16*19 мм с соотношением длин ступеней 65*35%. Для дальнейших расчетов принимаем конструкцию колонны с соотношением длин для ступеней 65*35%.
15. Рассчитаем потери хода плунжера и длину хода полированного штока:
м.
м.
м.
Критерий динамичности для данного режима:
Поскольку кр=0,2 (см. табл. II.3 /6/), то и длину хода полированного штока S можно определить по формулам:
м;
м.
Обе формулы дают одинаковый результат, причем длина хода штока оказалась несколько меньше, чем рассчитываемая без учета динамических усилий в штангах.
Для дальнейших расчетов принимаем ближайшую стандартную длину хода станка-качалки СК6-2,1-2500 s=2,1, тогда для сохранения прежней скорости откачки определяем уточненное число качаний:
кач/с=14,7 кач/мин;
рад/с.
Длина хода плунжера при s=2,1 м:
м;
а общий коэффициент подачи штанговой насосной установки:
16. Перейдем к определению нагрузок, действующих в точке подвеса штанг. Соответственно вес колонны штанг в воздухе и в жидкости с учетом веса “тяжелого низа”:
кН.
Вычислим предварительно коэффициенты mω и φ в формулах А. С. Вирновского:
Информация о работе Экономический расчет СШНУ для добычи нефти