Автор работы: Пользователь скрыл имя, 25 Марта 2013 в 05:34, курсовая работа
Экономический рост есть увеличение объема создаваемых полезностей а, следовательно, есть повышение жизненного уровня населения. Сам по себе экономический рост противоречив. Так, можно добиться увеличения производства и потребления, материальных благ за счет ухудшения их качества, за счет экономии на очистных сооружениях и ухудшения условий жизни, добиться временного роста производства можно и за счет эксплуатации ресурсов. Такой рост или неустойчив или вообще лишен смысла. Поэтому экономический рост имеет смысл тогда, когда он сочетается с социальной стабильностью.
Введение…………………………………………………………….с. 3 -4
Глава 1 Экономический рост и его измерение……..……..………с. 5 -5
§ 1. Понятие экономического роста……………………….……..с. 5 -8
§ 2. Показатели динамики экономического роста………....…......с. 9 -9
§ 3. Основные модели экономического роста……………...…....с.10-23
§ 4. Факторы экономического роста………………………….…с. 23-24
§ 5. Типы экономического роста……………………………...…с. 24-26
Глава 2 Источники экономического роста …………………….с. 27 -30
Глава 3 Основные тенденции экономико-политического развития…………………………………………………………..с. 31 -33
§ 1. Проблемы экономического роста………………….....…….с. 33 -35
§ 2. Экономический рост и безработица…………...…………...с. 35 -37
§ 3. Экономический рост и природные ресурсы………………..с. 37-38
Заключение…………………………………………………….....с. 39 -41
Список литературы………………………....
Анализ эффективного
спроса основывается на
Кейнс создает простую макроэкономическую модель рынка:
Y = C + S,
где Y – доход; С – потребление; S – сбережение.
Он применяет следующие формулы:
доход = ценности продукции = потреблению + инвестиции
(Y = C + I);
сбережение = доходу – потребление (S = Y – C);
сбережения = инвестициям (S = I).
Неравенство этих величин
рассматривается как признак
нарушения экономического
Размеры сбережений, считает Кейнс, регулирует не процентная ставка, как думали классики, а различные мотивы и соображения людей: чтоб делать крупные покупки, иметь запас наличных денег для непредвиденных покупок («предпочтение ликвидности»), для будущего потребления, непредвиденных случаев и т.д.
Из основного
Оказалось, что при
росте дохода потребление
Объем инвестиций зависит, по Кейнсу, от побуждения к инвестированию. Предприниматель расширяет свои инвестиции, пока предельная эффективность капитала (норма прибыли) падает до уровня процента. Источник экономических трудностей в том, что рентабельность капитала снижается сильно, тогда как норма процента сохраняет устойчивость. Это создает узкие границы для новых инвестиций и тем самым для роста занятости.
Снижение предельной эффективности капитала Кейнс объясняет прежде всего значительной аккумуляцией капиталов. Огромное значение он придает психологическому фактору – видам предпринимателей на будущие доходы («перспективная выгода»). Наступление экономических кризисов Кейнс выводит из «кризиса доверия», из потери капиталистами веры в будущие доходы.
В теории Кейнса намечена количественная связь между инвестициями и национальным доходом. Она представляется так называемым мультипликационным эффектом, который под влиянием приращения инвестиций в одной из отраслей вызывает приращение потребления и дохода не только в данной отрасли, но и в сопряженных отраслях. Итоговое приращение национального дохода оказывается больше первоначальной суммы инвестиций. Это выражается формулами:
∆Y= ∆IK; К=
где ∆Y – прирост дохода;
∆I – прирост инвестиций;
К – мультипликатор.
Мультипликатор оказывается
функцией предельной
Теория процента с
другой стороны объясняет
Модели роста Е. Д. Домара и Р. Ф. Харрода представляют первую попытку обобщить процессы, рассматриваемые в рамках кейнсианской модели, распространив их с краткосрочного периода на долгосрочный. В модели Кейнса рассматриваются условия формирования равновесного уровня национального дохода, тогда как в моделях, предложенных Домаром и Харродом, изучается совокупность условий, обеспечивающих равновесный или устойчивый темп роста национального дохода.
Так, модель устойчивого роста Домара описывает условия, обеспечивающие такой темп роста дохода, который необходим для полной загрузки увеличивающегося основного капитала, а такой подход предполагает совместное рассмотрение мультипликационного эффекта инвестиций и их влияния на расширение производственных мощностей. Модель Харрода несколько перемещает акценты, выдвигая в центр анализа последствия прироста индуцированных инвестиций - инвестиций, которые были вызваны (по крайней мере частично) ростом дохода в результате действия принципа акселерации. В качестве "побочного продукта" такого воздействия у Харрода выступает рост сбережений, связанный с увеличением дохода. В результате исследований Домара и Харрода была разработана модель, в рамках которой удалось интегрировать описание процессов мультипликации и акселерации; такая модель позволяет определить темпы роста дохода, необходимые для поддержания равенства между намечаемыми сбережениями и инвестициями. Оба эти подхода, как мы увидим, неизбежно оказываются двумя сторонами одной и той же медали, поскольку подлинно равновесный темп роста предполагает полное использование капитала в той же мере, как и равенство намечаемых сбережений и инвестиций. Имея это в виду, рассмотрим подробней обе модели.
Модель экономического роста Домара
Для того чтобы выяснить
роль увеличения
S = I = sY, 0 < s < l, (1)
где s ≡ S/Y ≡ ΔS/ΔY
Таким образом, s характеризует угол наклона функции и долгосрочных сбережений, которая проходит через начало координат. Поскольку угол наклона такой линии совпадает с отношением координат соответствующей точки, величина предельной склонности к сбережению, ΔS/ΔY, совпадает со значением средней склонности к сбережению S/Y.
Y обозначает физический объем годового национального дохода (все потоки здесь и далее определены в годовом исчислении). Предполагается, что размеры национального продукта достаточны для того, чтобы полностью привести в действие наличный запас капитальных благ (с должной поправкой на резервные мощности). Таким образом, мы можем считать Y национальным продуктом при условии полного использования производственных мощностей.
Итак, инвестиции текущего
года, фигурирующие в уравнении
(1), вызовут расширение
σ ≡ ΔY/ΔK ≡ ΔY/I,
где К - капитальный запас, а ΔK, следовательно, равно величине чистых инвестиций. Другими словами, коэффициент σ представляет собой среднее потенциальное годовое увеличение национального продукта, ставшее возможным благодаря инвестированию одного доллара или соответствующему росту капитального запаса, сочетающемуся с другими наличными ресурсами, главным образом с трудом. Отсюда σI - потенциальное увеличение годового национального продукта (т. е. увеличение производственной мощности), вызванное инвестициями данного года, I. Чтобы это увеличение производственного потенциала не повлекло за собой простого наращивания избыточных мощностей и тем самым не стало бы сдерживать будущие инвестиции и рост национального продукта, необходимо удовлетворить следующее условие:
ΔY = σI. (2)
Национальный доход
(совокупные расходы) будущего
года должен вырасти по
Из кейнсианской теории мультипликатора следует, что увеличение инвестиций вызывает рост национального дохода(Y=S+I). В самом деле, при данной склонности к сбережению s, увеличение годового дохода ΔY, сопряженное с ростом годовых инвестиций на ΔI, может быть выражено в таком виде:
ΔY = ΔI·1/s, (3)
где l/s представляет собой мультипликатор. Тогда, подставляя уравнение (3) в уравнение (2), получим:
ΔI·1/s = σI. (4)
Разделив обе части выражения (4) на I и умножив их на s, получаем
ΔI/I = σs. (5)
При фиксированной
величине капиталоотдачи и
Поскольку предполагалось, что инвестиции (и сбережения) составляют постоянную долю национального продукта, из этого необходимо следует, что последний тоже должен расти темпом, равным σs (процентов). Если это сразу не кажется очевидным, читатель может подставить σsY вместо σY в выражение (2), тогда, разделив обе части выражения на Y, нетрудно убедиться в том, что действительно
ΔY/Y = σs
Преобразуя , мы получаем окончательное уравнение динамики национального дохода:
Y ( t + 1) = ( 1 + σs ) Y( t ).
Эта модель представляет
собой конечно-разностное
Y(2)=(1+σs)Y1=(1+ σs)2Y0 и т.д.
Таким образом, общее решение имеет вид
Y(t)= (1+σs)tY0
Принимая s равным, например, 0,12 и σ = 1/з (что соответствует значению коэффициента капитал - продукт, равному 3), получим, что при полной загрузке производственных мощностей темп роста экономики равен 4% в год.
Ясно, что темп роста экономики при полной загрузке производственных мощностей изменяется прямо пропорционально s и σ. Это вполне естественно, поскольку, чем большая доля s национального продукта сберегается и инвестируется (при данном коэффициенте капиталоотдачи), тем больше увеличиваются производственные мощности, создаваемые благодаря этим инвестициям, и, следовательно, тем выше должны быть темпы роста национального продукта, препятствующие недоиспользованию производственных мощностей. Аналогичным образом: чем больше σ, тем больше при любом заданном размере инвестиций увеличение производственных мощностей и, следовательно, тем значительней должен быть рост национального продукта, который предотвращает образование избыточных мощностей. Более тщательный разбор описываемой модели показывает, что условия равновесного роста экономики (или роста в условиях полной загрузки мощностей) в неявном виде заключают в себе уже знакомое нам кейнсианское условие равенства намечаемых сбережений планируемым инвестициям, но только здесь это условие перенесено с краткосрочного периода (когда размеры капитального запаса фиксированы) на долгосрочный (когда такой запас оказывается переменной величиной). Итак, отправной точкой анализа в рамках такой модели роста служит кейнсианское условие краткосрочного равновесия сбережений и инвестиций (S=I). Кроме того, эта модель содержит следующее требование: для реализации приращения продукта, вызванного данными инвестициями, на ту же величину должен вырасти и национальный доход. Но анализ мультипликационного механизма показывает, что этот результат может быть достигнут только с помощью дополнительных инвестиций. Размеры такого увеличения зависят от предельной склонности к сбережению, и, таким образом, мы снова приходим к соотношению (4).
Перепишем это уравнение в следующем виде:
ΔI = σsI.
Поскольку увеличение
потенциального продукта, которому
должно соответствовать
ΔI = sΔY = ΔS.
Иначе говоря, условием
равновесного роста экономики
при расширяющемся капитальном
запасе является сохранение
Обратим внимание еще на один аспект формулировки условий устойчивого, равновесного роста в модели Домара. Согласно ей, рост инвестиций (и дохода) задается создающим производственные мощности и мультипликативным (доходообразующим) эффектами инвестиций; при этом ничего не говорится о факторах, определяющих инвестиции, другими словами, отсутствует уравнение спроса на инвестиции - уравнение, которое могло бы дать нам какое-нибудь представление об их фактическом поведении.
Модель экономического роста Харрода
Исследования Домара на несколько лет предвосхитила ставшая теперь знаменитой модель экономического роста Харрода.2 Последний сосредоточил свое внимание на четкой формулировке в явном виде условий равновесия намечаемых сбережений и инвестиций в расширяющейся экономике. Модель Харрода, основанная на принципе акселерации, к тому же отражала положения теории инвестиционного спроса. В анализе Харрода равновесие сбережений и инвестиций должно рассматриваться в общем контексте экономического роста потому, что, во-первых, сбережения являются функцией от уровня дохода и, во-вторых, капиталовложения (в силу принципа акселерации инвестиционного спроса) представляют собой - по крайней мере частично - функцию от прироста дохода. Но если условием осуществления инвестиций служит увеличение дохода, то вслед за повышением дохода будут расти и сбережения. Следовательно, поддержание равновесия между (намечаемыми) сбережениями и инвестициями требует также увеличения инвестиций. Проблема заключается в следующем: как определить темп роста, способный обеспечить указанное равенство.
Решение проблемы можно
начать с использования
S = I. (6)
Кроме того, предполагается, что сбережения (S) представляют собой постоянную долю (s) дохода, т. е.:
S =sY, 0 < s < l, (7)
где, как и раньше,
символа используется для
Информация о работе Экономический рост: сущность, источники, основные тенденции