Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 14:28, дипломная работа
Электроэнергетика является базовой отраслью российской экономики, обеспечивающей потребности народного хозяйства и населения в электроэнергии и теплоэнергии и экспорт электроэнергии в страны СНГ и дальнего зарубежья. От устойчивой и надежной работы отрасли во многом зависит энергетическая безопасность страны. В условиях роста производства промышленности электроэнергетика становится одним из жизнеобеспечивающих секторов экономики и одним из факторов экономического развития, а её надежное функционирование – важнейшим условием перехода России к высокому стандарту и уровню жизни. Перспективы развития электроэнергетики определены Электроэнергетической стратегией России на период до 2020 г., которая была утверждена Правительством РФ 28 августа 2003 г.
Введение …………………………………………………………………………… 6
1 Технологический процесс……………………………………………………….10
2 Показатели качества электроэнергии…………………………………………..15
3 Выбор напряжения электрической сети………………………………………..23
4 Определение расчетных электрических нагрузок……………………………..26
4.1 Расчетная нагрузка ремонтно-механического цеха №7……………………..26
4.2 Расчетные нагрузки для остальных цехов завода…………………………....28
4.3 Определение расчетной нагрузки электрического освещения……………...30
4.4 Расчетная нагрузка всего завода………………………………………………31
5 Определение количества и мощности трансформаторов……………………...34
5.1 Предварительный выбор количества цеховых трансформаторов на предприятии………………………………………………………………………..34
5.2 Определение мощности КУ напряжением до 1 кВ и выше…………………34
5.3 Выбор варианта количества цеховых трансформаторов……………………35
5.4 Выбор местоположения и мощности трансформаторов ГПП………………36
5.5 Определение количества трансформаторов в каждом цехе………………...36
5.6 Выбор мощности батарей конденсаторов……………………………………38
6 Выбор схемы внутреннего электроснабжения и ее параметров……………...39
6.1 Выбор схемы межцеховой сети……………………………………………….39
6.2 Выбор сечений жил кабелей распределительной сети………………………40
6.3 Технико- экономические показатели и сравнение двух вариантов схем…..46
7 Расчет токов короткого замыкания……………………………………………..51
7.1 Составление схемы замещения и расчет ее параметров…………………….51
7.2 Определение токов короткого замыкания……………………………………53
7.3 Выбор оборудования…………………………………………………………..54
8 Релейная защита и автоматика………………………………………………….58
8.1 Назначение релейной защиты и автоматики………………………………....58
8.2 Основные требования, предъявляемые к релейной защите и автоматике…59
8.3 Защита кабельных линий и цеховых трансформаторов……………………..62
9 Безопасность жизнедеятельности……………………………………………….68
9.1 Повышенное значение тока и напряжения в электрической цепи………….68
9.2 Повышенный уровень электромагнитных излучений……………………….70
9.3 Повышенный уровень шума на рабочем месте………………………………71
9.4 Защита от повышенного уровня электромагнитных полей…………………73
9.5 Борьба с повышенным уровнем шума………………………………………. 74
9.6 Противопожарные меры при эксплуатации электроустановок……………..74
9.7 Требования к персоналу……………………………………………………….75
9.8 Производственная санитария………………………………………………….76
10 Расчет заземления и молниезащиты механического цеха……………………79
11 Расчет электроосвещения механического цеха……………………………….83
11.1 Выбор системы освещения и освещенности цеха………………………….83
11.2 Выбор типа и мощности источника света…………………………………..83
12 Экономическая часть…………………………………………………………...91
13 Монтаж токопроводов напряжением 6-35 кВ………………………………...99
Заключение………………………………………………………………………..110
Список использованной литературы…………………………………………….111
Обеспечение качества электроэнергии на зажимах приемников электроэнергии — одна из наиболее сложных задач, решаемых в процессе проектирования и эксплуатации систем электроснабжения. Появление в системах электроснабжения мощных электродвигателей, вентильных преобразователей и других приемников с резкопеременной нагрузкой создало проблему их электромагнитной совместимости с системой электроснабжения, успешное решение которой обеспечивает рациональную работу, как этих приемников, так и приемников со спокойной нагрузкой, присоединенных к той же системе (освещение, электродвигатели длительного режима работы и др.).
Показатели качества электроэнергии регламентируются требованиями ГОСТ 13109—97.
К показателям качества электроэнергии для трехфазных сетей переменного тока относятся следующие:
отклонение напряжения;
колебание напряжения;
коэффициенты несимметрии и неуравновешенности напряжений;
коэффициент несинусоидальности напряжения;
отклонение частоты;
колебания частоты.
Отклонение напряжения V — это разность действительного значения напряжения U и его номинального значения Uн для сети, возникающая при сравнительно медленном изменении режима работы, когда скорость изменения напряжения меньше 1% в секунду:
V=U-Uн
Весьма чувствительны к
Значительное влияние
Высокие требования к качеству напряжения предъявляют осветительные установки. При отклонениях напряжения изменяются сила света ламп накаливания и срок их службы. Сила света изменяется при этом пропорционально изменению напряжения в третьей — четвертой степени. Повышение напряжения на 10% сокращает срок службы ламп накаливания примерно в 3 раза.
ГОСТ 13109—97 допускает отклонения напряжения на зажимах электроосветительных приборов от минус 2,5 до +5%.
Под колебанием напряжения V, подразумевается изменение напряжения в сети со скоростью более 1 %/с:
Vt=Uнб
-Uнм ,
где: Uнб и Uнм — соответственно наибольшее и наименьшее действующие напряжения в кратковременном процессе его изменения, %.
Колебания напряжения ограничиваются частотой их возникновения. Для зрительного восприятия наиболее опасными считаются колебания с частотами в пределах 1...10 Гц. Их значение при этом ограничивается величиной порядка 1%. Если число колебаний в час не превышает 10, то это значение возрастает до 1,5%, при числе колебаний не более 1 раза в час — до 4%.
Допустимые значения колебаний напряжения в сетях, от которых питаются электроосветительные установки и радиоприборы, определяют по формуле
,
где: т — частота колебаний в час, 1/ч; t— средний интервал между последовательными колебаниями, мин.
Для обеспечения нормируемого ГОСТ 13109—97 режима напряжения применяются различные способы и средства регулирования напряжения.
Способы регулирования:
регулирование напряжения на шинах центра питания;
изменение сопротивления элементов сети;
изменение силы реактивного тока, протекающего в сети;
изменение коэффициента трансформации трансформаторов и автотрансформаторов (линейных регуляторов).
Средства регулирования:
трансформаторы с регулирование
линейные регуляторы;
управляемые батареи конденсаторов;
синхронные двигатели с автоматическими регуляторами возбуждения.
Кроме того, можно использовать трансформаторы с переключением без возбуждения (ПБВ), неуправляемые батареи конденсаторов, синхронные двигатели без автоматического регулирования возбуждения.
Несимметрия напряжений и токов трехфазной системы — один из важнейших показателей качества электрической энергии. Причина появления несимметрии, напряжений и токов — различные несимметричные режимы системы электроснабжения. Широкое применение однофазных установок значительной мощности различного рода привело к значительному увеличению доли несимметричных нагрузок. Подключение таких мощных несимметричных однофазных нагрузок к трехфазным сетям вызывает в системах электроснабжения длительный несимметричный режим, характеризующийся несимметрией напряжений и токов.
В системах электроснабжения различают кратковременные (аварийные) и длительные (эксплуатационные) несимметричные режимы. Кратковременные несимметричные режимы обычно связаны с аварийными различными процессами, например несимметричными короткими замыканиями, обрывами одного или двух проводов воздушной линии с замыканием на землю и т. п. Длительные несимметричные режимы обычно обусловлены несимметрией элементов электрической сети или подключением к системе электроснабжения несимметричных нагрузок.
Несимметрия напряжений и токов, обусловленная несимметрией элементов электрической сети, называется продольной. Примером продольной несимметрии могут служить неполнофазные режимы воздушных линий. Несимметрия характерна также для специальных систем электропередачи: два провода — земля (ДПЗ); два провода — рельсы (ДПР), два провода — труба (ДПТ) и т. д.
Несимметрия напряжений и токов, вызванная подключением к сети много- и однофазных несимметричных нагрузок, называется поперечной.
Несимметрия характеризуется коэффициентом несимметрии напряжения
Кп — отношение напряжения обратной последовательности основной частоты U2 к номинальному линейному напряжению U1.
,
И коэффициентом
.
Коэффициент несимметрии напряжений служит нормированным показателем качества электрической энергии. В соответствии с ГОСТ 13109—97 Кн 2% длительно допустим на зажимах любого трехфазного симметричного приемника электрической энергии. В случаях, когда коэффициент несимметрии оказывается больше, должны быть приняты меры к его снижению.
Несимметрия напряжений в системах электроснабжения оказывает значительное влияние на работу отдельных элементов сети и приемников электрической энергии. При несимметрии напряжений, обусловленных несимметричной нагрузкой, в статорах синхронных машин проходят токи прямой, обратной и нулевой последовательности, что вызывает нагрев ротора и увеличение вибрации, в некоторых случаях опасной для конструкции машин.
Особенно неблагоприятно несимметрия напряжений сказывается на работе и сроке службы асинхронных машин. При несимметрии напряжений конденсаторные установки неравномерно загружаются реактивной мощностью по фазам, мощность многофазных выпрямителей снижается.
При несимметричном режиме токи нулевой последовательности постоянно проходят через заземлители и отрицательно сказываются на их работе, вызывая высушивание грунта и увеличение сопротивления растеканию. Они оказывают значительное влияние на низкочастотные каналы проводной связи, сигнализации и автоблокировки.
Несинусоидальность формы кривой напряжения и тока. Широкое внедрение приемников электрической энергии с нелинейными вольтамперными характеристиками, определяемое потребностями увеличения экономической эффективности производства, привело к отрицательному влиянию этих приемников на электрические параметры режима сети.
К элементам систем электроснабжения (СЭС) с нелинейными вольтамперными характеристиками относятся вентильные преобразователи (ртутные и полупроводниковые), установки электросварки, газоразрядные источники света, а также трансформаторы и электродвигатели. Характерная особенность этих устройств — потребление ими из сети несинусоидальных токов при подведении к их зажимам несинусоидального напряжения.
Высшие гармонические токи и напряжения обусловливают дополнительные потери электроэнергии, приводят к нагреву электрооборудования и увеличивают интенсивность старения его изоляции и изоляции кабелей. Особенно неблагоприятное влияние эти гармоники оказывают на работу конденсаторных батарей, вызывая дополнительные потери и даже выход их из строя.
Токи высших гармоник, проходя по элементам сети, вызывают падения напряжения в сопротивлениях этих элементов, которые, накладываясь на основную синусоиду напряжения, приводят к искажению формы кривой напряжения.
Степень несинусоидальности напряжения сети принято характеризовать коэффициентом несинусоидальности напряжения Кнс, который представляет собой отношение действующего значения гармонической составляющей несинусоидального напряжения к напряжению основной частоты, %:
,
где Uv, U1 — действующие значения соответственно v-й и 1-й гармоник напряжения.
ГОСТ 13109—97 нормирует форму кривой напряжения у приемников электроэнергии, допуская отклонение действующего напряжения всех высших гармоник от действующего напряжения основной частоты не более 5%.
Для снижения уровня влияния высших гармоник на напряжение устанавливают силовые фильтры, уменьшают число фаз выпрямления.
Отклонение частоты - разность действительного f и номинального fн значений основной частоты
в Гц
,
или в %
.
В нормальном режиме работы энергетической системы допускаются отклонения частоты, усредненные за 10 мин, ±0,1 Гц. Допускается временная работа энергетической системы с отклонением частоты, усредненным за 10 мин, ±0,2 Гц.
Колебания частоты — это изменения частоты, происходящие со скоростью 0,2 Гц/с. Колебания частоты — разность наибольшего fнб и наименьшего fнм значений основной частоты за определенный промежуток времени:
в Гц
,
или в %
.
В установившемся режиме частота во всей энергетической системе (связанной сетями переменного тока) одинакова и определяется частотой вращения генераторов. Однако частота вращения генераторов определяется частотой вращения первичных двигателей — турбин, которые имеют специальный регулятор частоты вращения (первичное регулирование), обладающий сравнительно большой инерцией (до 5%). Это значит, что частота вращения турбин зависит от механической нагрузки на ее валу и определяется расходом энергоносителя (пар, вода). Электрическая нагрузка турбин непрерывно изменяется, поэтому должна изменяться и частота вращения генераторов (турбогенераторов); при росте нагрузки частота вращения (и частота сети) снижается, а при уменьшении возрастает.
В настоящее время поддержание допустимого размаха колебаний частоты в энергетических системах во время аварийного отключения источников питания обеспечивается устройствами аварийной автоматической разгрузки по частоте (ААРЧ), которые отключают часть менее ответственных потребителей.