Организационно-правовые формы автотранспортных предприятий

Автор работы: Пользователь скрыл имя, 04 Ноября 2012 в 18:57, реферат

Описание работы

деятельности предприятия. Развитие рыночных отношений определяет новые условия их организации. Высокая инфляция, неплатежи и другие кризисные явления вынуждают предприятия изменять свою политику по отношению к оборотным средствам, искать новые источники пополнения, изучать проблему эффективности их использования.
Одним из условий непрерывности производства является постоянное возобновление его материальной основы - средств производства. В свою очередь, это предопределяет непрерывность движения самих средств производства, происходящего в виде их кругооборота.
Изучение сущности оборотных средств предполагает рассмотрение оборотных фондов и фондов обращения. Оборотные средства, оборотные фонды и фонды обращения существуют в единстве и взаимосвязи, но между ними имеются существенные различия, которые сводятся к следующему: оборотные средства постоянно находятся во всех стадиях деятельности предприятия, в то время как оборотные фонды проходят производственный процесс, заменяясь все новыми партиями сырья, топлива, основных и вспомогательных материалов.

Содержание работы

1. КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ
1.1. Металлы
1.2. Классификация металлов
1.3. Кристаллическое строение металлов
1.4. Кристаллические решетки металлов
1.5. Реальное строение металлических кристаллов
1.6. Анизотропия свойств кристаллов
2. КРИСТАЛЛИЗАЦИЯ
2.1. Три состояния вещества
2.2. Энергетические условия процесса кристаллизации
2.3. Механизм процесса кристаллизации
2.4. Форма кристаллических образований
2.5. Строение слитка
2.6. Превращения в твердом состоянии. Полиморфизм
3. механические свойства. НАКЛЕП И РЕКРИСТАЛЛИЗАЦИЯ
3.1. Методы определения механических свойств

Файлы: 1 файл

Материаловедение.doc

— 4.55 Мб (Скачать файл)

Размер образовавшихся кристаллов зависит от соотношения  величин с.к. и ч.ц. при температуре кристаллизации, при данной степени переохлаждения. При большом значении с.к. и малом значении ч.ц., образуются немногочисленные крупные кристаллы; при малых значениях с.к. и больших ч.ц. образуется большое число мелких кристаллов.

Учитывая изложенное, можно отметить, что переход из одного состояния в другое, например из жидкого в твердое, возможен тогда, когда твердое состояние более устойчиво, имеет более низкое значение свободной энергии. Но сам переход из одного состояния в другое| требует затраты энергии на образование поверхности раздела жидкость - кристалл.

 

2.4. Форма кристаллических образований

 

Реально протекающий  процесс кристаллизации усложняется  действием различных факторов, в  столь сильной степени влияющих на процесс, что роль степени переохлаждения может стать в количественном отношении второстепенной.

При кристаллизации из жидкого  состояния для скорости течения  процесса и для формы образующихся кристаллов первостепенное значение приобретают такие факторы, как скорость и направление отвода тепла, наличие не растворившихся частиц (которые могут служить готовыми центрами кристаллизации), конвекционных токов жидкости и т. д.

В направлении отвода тепла кристалл растет быстрее, чем  в другом направлении.

Если на боковой поверхности  растущего кристалла возникает бугорок, то кристалл приобретает способность расти и в боковом направлении. В результате образуется древовидный кристалл, так называемый дендрит, схематическая структура которого, впервые изображенная Д.К. Черновым, показана на рис. 2.5.

 

Рис.2.5. Схема дендрита


 

Дендритное строение типично для литого металла. Если условия благоприятны, охлаждение медленное, то могут вырасти огромного размера, дендриты.

Согласно схеме (см. рис.2.5.) дендрит состоит из ствола (ось  первого порядка), от которого идут ветви (оси второго и последующего порядка).

 

2.5. Строение слитка

 

Структура литого слитка состоит из трех основных зон (рис.2.6.). Первая зона - наружная мелкозернистая корка 1, состоящая из дезориентированных мелких кристаллов - дендритов. При первом соприкосновении со стенками изложницы в тонком прилегающем слое жидкого металла возникает резкий градиент температур и явление переохлаждения, ведущее к образованию большого количества центров кристаллизации. В результате корка получает мелкозернистое строение.

Вторая зона слитка - зона столбчатых кристаллов 2. После образования самой корки условия теплоотвода меняются (из-за теплового сопротивления, из-за повышения температуры стенки изложницы и других причин), градиент температур в прилегающем слое жидкого металла резко уменьшается и, следовательно, уменьшается; степень переохлаждения стали. В результате из небольшого числа центров кристаллизации начинают расти нормально ориентированные к поверхности корки (т.е. в направлении отвода тепла) столбчатые кристаллы.

Третья зона слитка - зона равноосных кристаллов 3. В центре слитка уже нет определенной направленности отдачи тепла. Температура застывающего металла успевает почти совершенно уравниваться в различных точках и жидкость обращается как бы в кашеобразное состояние, вследствие образования в различных ее точках зачатков кристаллов. Далее зачатки разрастаются осями - ветвями по различным направлениям, встречаясь друг с другом. В результате этого процесса образуется равноосная структура. Зародышами кристалла здесь являются обычно различные мельчайшие включения, присутствующие в жидкой стали, или случайно в нее попавшие, или не растворившиеся в жидком металле.

В зоне столбчатых кристаллов металл более плотный, он содержит меньше раковин и газовых пузырей. Однако места стыка столбчатых кристаллов обладают малой прочностью. ;

 

Рис.2.6. Схема строения стального слитка


 

2.6. Превращения в твердом состоянии.  Полиморфизм

 

Атомы данного элемента могут образовать, если исходить только из геометрических соображений, любую кристаллическую решетку. Однако устойчивым, а следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии.

Однако в ряде случаев  при изменении температуры или  давления может оказаться, что для  того же металла более устойчивой будет другая решетка, чем та, которая была при другой температуре или; давлении. Так, например, существует железо с решетками объемноцентрированного и гранецентрированного кубов.

Существование одного металла (вещества) в нескольких кристаллических  формах носит название полиморфизма, или аллотропии. Различные кристаллические формы одного вещества называются полиморфными или аллотропическими модификациями.

Аллотропические формы  обозначаются греческими буквами a, b, g и т. д., которые в виде индексов добавляют к символу, обозначающему элемент. Аллотропическая форма, существующая при самой низкой температуре, обозначается через a, следующая через b и т. д.

Превращение одной аллотропической  формы в другую при нагреве  чистого металла сопровождается поглощением тепла и происходит при постоянной температуре. На термической кривой превращение отмечается горизонтальным участком. При охлаждении происходит выделение тепла (выделение скрытой теплоты превращения) теоретически при такой же температуре, что и при нагреве, но практически при несколько более низкой вследствие переохлаждения.

 

3. механические свойства. НАКЛЕП И РЕКРИСТАЛЛИЗАЦИЯ

 

3.1. Методы определения механических  свойств

Испытания на растяжение

 

Механическими называют свойства, которые  материал проявляет при действии на него внешних, механических сил со стороны других тел. Действие силы вызывает деформацию твердого тела, и в нем возникают напряжения. Напряжение является удельной величиной и определяется как отношение силы, действующей на тело, к площади его сечения:

;

где  s – напряжение;

Р – сила;

F – площадь поперечного сечения (рис.3.1).

Напряжение в системе  СИ выражается в Н/м2 или МН/м2 т.е. МПа. На практике может быть использована размерность кгс/мм2, (1 кгс/мм2 » 9,81 МПа). В общем случае сила не перпендикулярна площадке, на которую она действует. Тогда ее, как и любой вектор, можно разложить на две составляющие: нормальную (перпендикулярную к площадке), создающую нормальное напряжение и касательную, действующую в плоскости площадки и вызывающую касательное напряжение (рис.3.2.).

 

 

 

Рис. 3.1. Схема нормальных сил

Рис. 3.2. Схема составляющих сил


 

В механических испытаниях определяют именно эти напряжения. Их же используют при определении усилий, необходимых  для обработки металлов давлением  и при расчетах деталей на прочность. Это связано с тем, что одни процессы при деформировании и разрушении определяются касательными напряжениями (пластическая деформация, разрушение путем среза), а другие - нормальными (разрушение отрывом). Нормальные напряжения делят на растягивающие и сжимающие. Под действием механических сил твердое тело деформируется. Деформацией в механике называется процесс изменения взаимного расположения каких-либо точек твердого тела. Деформация может быть обратимой (упругой), исчезающей после снятия нагрузки, и необратимой - остающейся после снятия деформирующего усилия. Необратимую деформацию называют пластической или остаточной. При определенных условиях нагружения деформация может закончиться разрушением.

Процесс деформации под  действием постепенно возрастающей нагрузки складывается из трех последовательно  накладывающихся одна на другую стадий (рис.3.3.)

 

Рис.3.3.Схема процесса деформации


 

Даже незначительное усилие вызывает упругую деформацию, которая в  чистом виде наблюдается только при  нагрузках до точки А. Упругая  деформация характеризуется прямопропорциональной зависимостью от нагрузки и упругим изменениям межатомных расстояний. При нагрузках выше точки А в отдельных зернах металла, ориентированных наиболее благоприятно относительно направления деформации, начинается пластическая деформация. Дальнейшее увеличение нагрузки вызывает и увеличение упругой, и пластической деформации (участок АВ). При нагрузках точки В возрастание упругой деформации прекращается. Начинается процесс разрушения, который завершается в точке С.

Механические свойства материалов: прочность, твердость, пластичность, вязкость, упругость определяются при различных условиях нагружения и разных схемах приложения усилий. Широко распространено испытание материалов на растяжение, по результатам которого можно определить в частности показатели прочности и пластичности материала.

Прочность - это способность материала сопротивляться пластической деформации под действием внешних нагрузок.

Пластичность - это способность материала проявлять, не разрушаясь, остаточную деформацию.

Условия приведения испытаний и порядок определения показателей механических свойств регламентированы стандартом ГОСТ 1497-84.

Подготовка к испытанию

 

Для проведения испытаний  рекомендуется применять круглые  или плоские пропорциональные образцы (рис.3.4.), у которых начальная расчетная длина пропорциональна диаметру d0 или корню квадратному из площади сечения образца F0. Предпочтительны соотношения l0 = 5×d0 для круглых и для плоских образцов.

 

Рис.3.4. Образцы для испытаний:

а – круглый; б – плоский.

L - общая длина; l - рабочая длина; l0 - начальная расчетная длина;

d0 - диаметр образца до испытания; а - толщина;

b - ширина; R - радиус скругления.


Оборудование для испытаний

 

Для проведения испытаний  могут быть использованы специальные или универсальные испытательные машины Рассмотрим устройство испытательной машины на примере УММ-5 (рис.3.5.) Машина УММ-5 имеет электромеханический привод 1 подвижного захвата 2, скорость перемещения которого может быть установлена с помощью рычага коробки скоростей.

 

Рис.3.5. Схема испытательной машины УММ-5


 

С неподвижным захватом 3 связан рычажно-маятниковый сило-измеритель 4. Возрастание усилия в верхнем неподвижном захвате 3 вызывает соответствующее отклонение маятника 5, происходит уравновешивание. Величина усилия показывается стрелкой на круговой шкале 6. Машина имеет диаграммный аппарат 7, позволяющий записывать при испытании кривую деформации в координатах сила – деформация.

Проведение испытаний

 

Перед испытанием определяют начальную площадь поперечного  сечения F0. Метками (неглубокими кернами или рисками) на рабочей длине l, обозначают расчетную длину l0. Подготовленный образец закрепляют в захватах испытательной машины.

Включают электропривод машины и наблюдают за процессом испытания. В процессе испытания при деформировании образца возрастает нагрузка. Зависимость нагрузки от абсолютной деформации записывается с помощью диаграммного устройства (рис.3.5, поз. 7).

На диаграмме по оси ординат откладывается нагрузка Р в ньютонах (или кгс), а по оси абсцисс - величина абсолютных удлинении Dl в определенном масштабе.

После разрыва образца  выключают электропривод, вынимают из захватов обе части образца, с диаграммного аппарата снимают часть ленты с написанной диаграммой (первичной).

Вид диаграммы растяжения зависит от природы материала  и от его структурного состояния (рис.3.6.).

 

Рис. 3.6. Виды диаграмм растяжения различных материалов

а - для большинства металлов в пластичном состоянии с постепенным переходом из упругой области в пластическую (медь, бронза, легированные стали);

б - для некоторых металлов в пластичном состоянии со скачкообразным переходом в пластическую область (малоуглеродистая сталь, некоторые отожженные бронзы);

в - для хрупких материалов (чугун, стекло, закаленная и неотпущенная сталь, силумин).

 

Рассмотрим стадии растяжения на примере малоуглеродистой стали (рис.3.6б).

Вначале до точки А  зависимость между нагрузкой  и удлинением изображается прямой линией, т.е. наблюдается прямая пропорциональность между удлинением и нагрузкой. Интенсивность возрастания нагрузки с ростом удлинения характеризует жесткость материала.

Ордината точки А  соответствует нагрузке при пределе  пропорциональности Рпц . До предела пропорциональности в образце возникают только упругие деформации. При дальнейшем растяжении образца начинается заметное отклонение линии от первоначального направления, приводящее в случае малоуглеродистой стали к появлению на диаграмме горизонтального или почти горизонтального участка. Это означает, что образец удлиняется без заметного возрастания растягивающей нагрузки. Материал как бы течет, поэтому нагрузка Рт, соответствующая горизонтальному участку (точка В) называется нагрузкой при пределе текучести.

Информация о работе Организационно-правовые формы автотранспортных предприятий