Шпаргалка по "Сертификации, стандартизации и метрологии"

Автор работы: Пользователь скрыл имя, 18 Августа 2015 в 12:45, шпаргалка

Описание работы

1.Сущность сертификации и основные определения: "сертификация соответствия», «сертификат соответствия», «знак соответствия».
В условиях рыночной экономики, когда продукцию и услуги представляют предприятия различных форм собственности, наиболее эффективным способом гарантии , качества продукции и услуг, а точнее соответствия их установленным требованиям, является сертификация.
Это следует из сущности самого понятия сертификации и той организационной системы, которая создается для ее реализации. Понятие "сертификация соответствия" было сформулировано специальным Комитетом Совета Международной Организации по стандартизации (ИСО) по вопросам сертификации (СЕРТИКО) и включено в Руководство № 2 ИСО, выпущенное в ноябре 1982 г. Пересмотренное Руководство ИСО/МЭК 2, вышедшее как совместное издание ИСО и МЭК (Международная электротехническая комиссия) без существенных изменений воспроизводит определение этого понятия, Международная организация по стандартизации (ИСО) создана в 1947 году. Её целью является содействие стандартизации в мировом масштабе. В состав ИСО входят национальные органы по стандартизации. ИСО разрабатывает свои стандарты и другие документы на продукцию, терминологию, классификацию, организационную деятельность.

Файлы: 5 файлов

Стандартизация(шпора).docx

— 108.02 Кб (Просмотреть файл, Скачать файл)

Задачи(шпора).docx

— 2.36 Мб (Просмотреть файл, Скачать файл)

Метрология(шпора).docx

— 284.29 Кб (Скачать файл)

1) Основные представления теоретической  метрологии: Физические свойства  и величины. Классификация физических  величин.

Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов.  Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан.

Физическая величина – характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношений для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта (т. е. значение физической величины может быть для одного объекта в определенное число раз больше или меньше, чем для другого). Например»: длина, время, сила электрического тока.

Единица физической величины – физическая величина фиксированного размера, которой условно присвоено числовое значение равное 1, и применяемое для количественного выражения однородных физических величин. Например: 1 м – единица длины, 1 с – времени, 1А – силы электрического тока.

Система единиц физических величин – совокупность основных и производных единиц физических величин, образованная в соответствии с принятыми принципами для заданной системы физических величин. Например: Международная система единиц (СИ), принятая в 1960 г.

В системе единиц физических величин выделяют основные единицы системы единиц (в СИ – метр, килограмм, секунда, ампер, кельвин). Из сочетания основных единиц образуются производные единицы (скорости)

Физические свойства характеризуют физическое состояние материала, а также его способность реагировать на внешние факторы, не влияющие на химический состав материала. К физическим свойствам материалов относятся плотность, средняя плотность, пористость, водопроницаемость, водостойкость, водопоглощение, атмосферостойкость, морозостойкость, влажность, теплопроводность, теплостойкость (температуроустойчивость), температура размягчения, вспышки и стеклования, укрывистость, вязкость, гибкость, адгезия, газо- и паропроницаемость, усадка или удлинение, огнестойкость.

 

2) Правовые основы  метрологической деятельности в  РФ. Основные положения закона  «Об обеспечении единства измерений»

В 1993 г. принят Закон РФ "Об обеспечении единства измерений". До того по существу не было законодательных норм в области метрологии. Правовые нормы устанавливались постановлениями Правительства. По сравнению с положениями этих постановлений Закон установил немало нововведений - от терминологии до лицензирования метрологической деятельно-сти в стране. Установлено четкое разделение функций государственного метрологического контроля и государственного метрологического надзора; пересмотрены правила калибровки, введена добровольная сертификация средств измерений и др. Основные положения Закона "Об обеспечении единства измерений".

 

Цели Закона состоят в следующем:

1)защита прав и законных  интересов граждан, установленного  правопорядка и экономики Российской  Федерации от отрицательных последствий  недостоверных результатов измерений;

2_содействие научно-техническому  и экономическому прогрессу на  основе применения государственных  эталонов единиц величин и  использования результатов измерений  гарантированной точности, выраженных  в допускаемых к применению  в стране единицах;

3_создание благоприятных  условий для развития международных и межфирменных связей;

4) регулирование отношений  государственных органов управления  Российской Федерации с юридическими  и физическими лицами по вопросам  изготовления, выпуска, эксплуатации, ремонта, продажи и импорта средств  измерений;

5_адаптация российской  системы измерений к мировой  практике.

Основные статьи Закона устанавливают

1_организационную структуру  государственного управления обеспечением  единства измерений;

2_нормативные документы  по обеспечению единства измерений;

3)единицы величин и  государственные эталоны единиц  величин;

4)средства и методики  измерений.

 

3) Свойства проявляющие себя в отношении эквивалентности. Понятие счета.

Если свойство проявляет себя только в отношении эквивалентности, то обладающие им объекты могут быть: обнаружены, классифицированы, подвергнуты контролю по классам свойств эквивалентности, отражены соответствующими формальными объектами — числами.

Примером объектов, обладающих Свойствами эквивалентности, могут служить, например, виды животных: заяц, медведь и др. Каждая группа таких объектов отличается характерными свойствами, наименованиями и распознается по эквивалентности тем или иным способом.

Свойства, проявляющиеся в отношении эквивалентности, отображаются изоморфно, т. е. взаимооднозначно в обоих направлениях. При этом данному эмпирическому объекту X1 соответствует только данный формальный объект N1, например в виде числа из множества натуральных чисел NH, и наоборот:

X1 Î Xэкв ® N1 Î (1...NH). Для отображения числами объектов, которые обладают свойствами, проявляющими себя лишь в отношении эквивалентности, используется шкала наименований (рассматривается далее).

Основным информативным параметром совокупности объектов с отношением эквивалентности является их количество, которое определяется путем счета. При счете численность качественно однотипных объектов отображается соответствующим числом из натурального ряда чисел. Счет — это процедура определения численности качественно однотипных объектов в данной их совокупности. Для проведения счета необходимо [20] априорно реализовать последовательность теоретических и эмпирических методов, а именно:

• наблюдения за объектом счета;

• абстрагирования от всех свойств объектов, кроме учитываемого;

• анализа и сравнения — для выявления отдельного объекта;

• индукции — для установления повторяемости объектов;

• обобщения — для выделения группы общих свойств.

После этого становится возможным применение эмпирико-теорети-ческих методов формализации представлений о множестве объектов в виде ряда целых чисел. Результатом счета является число объектов. Основными характеристиками счета являются достоверность и скорость.

4)Государственная метрологическая  служба РФ. Организационные основы ГМС.

осударственная метрологическая служба России (ГМС) представляет собой совокупность государственных метрологических органов и создается для управления деятельностью по обеспечению единства измерений.

Общее руководство ГМС осуществляет Госстандарт РФ, на который Законом "Об обеспечении единства измерений" возложены следующие функции: 1 межрегиональная и межотраслевая координация деятельности по обеспечению единства измерений; 2 представление Правительству РФ предложений по еди-ницам величин, допускаемым к применению; 3 установление правил создания, утверждения, хранения и применения эталонов единиц величин; 4 определение общих метрологических требований к сред-ствам, методам и результатам измерений;

5 государственный метрологический  контроль и надзор;

6 контроль за соблюдением  условий международных договоров  РФ о признании результатов  испытаний и поверки средств  измерений; 7 руководство деятельностью Государственной метрологической службы и иных государственных служб обеспече-ния единства измерений;

8 участие в деятельности  международных организаций по  вопросам обеспечения единства  измерений;

9 утверждение нормативных  документов по обеспечению единства  измерений; 10 утверждение государственных эталонов; 11 установление межповерочных интервалов средств измерений; 12 отнесение технических устройств к средствам измерений; 13 установление порядка разработки и аттестации методик выполнения измерений;

14 ведение и координация  деятельности Государственных научных  метрологических центров (ГНМЦ), Государственной  метрологической службы, Государственной  служ-бы времени и частоты (ГСВЧ), Государственной службы стандартных образцов (ГССО), Государственной службы стандартных справочных данных (ГСССД); 15 аккредитация государственных центров испытаний средств измерений;

16 утверждение типа средств  измерения;

17 ведение Государственного  реестра средств измерений;

18 аккредитация метрологических  служб юридических лиц на право  поверки средств измерений;

19 утверждение перечней  средств измерений, подлежащих поверке; 20 установление порядка лицензирования деятельности юридических и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений;

21 организация и координация  деятельности государственных инспекторов  по обеспечению единства измерений; 22 организация деятельности и  аккредитация метрологических служб  юридических лиц на право проведения  калибровочных работ; 23планирование и организация выполнения метрологических работ.

В состав ГМС входят семь государственных научных метрологических центров, Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) и около 100 цен-тров стандартизации и метрологии. Наиболее крупные среди на-учных центров - НПО "ВНИИ метрологии имени Д.И. Менделеева" (ВНИИМ, Санкт-Петербург), НПО "ВНИИ физико-технических и радиотехнических измерений" (ВНИИФТРИ, Московская область), Сибирский государственный научно-исследовательский институт метрологии (СНИИМ, Новосибирск), Уральский научно-исследовательский институт метрологии (УНИИМ, Екатеринбург). Научные центры являются держателями государственных эталонов, а также проводят исследования по теории измерений, принципам и методам высокоточных измерений, разработке научно-методических основ совершенствования российской системы измерений.

 

5) Интенсивные величины удовлетворяющие отношениям эквивалентности и порядка. Понятие величины и контроля.

Многие свойства, помимо отношения эквивалентности, проявляют себя и в отношении наличия у них количественной ординаты свойства — интенсивности. При расчленении объекта такие свойства обычно не изменяются и называются интенсивными величинами. Путем сравнения интенсивных величин можно определить их соотношение, упорядочить по интенсивности данного свойства. При сравнении интенсивных величин выявляется отношение порядка (больше, меньше или равно), т.е. определяется соотношение между величинами. Примерами интенсивных величин являются твердость материала, запах и др.

Интенсивные величины могут быть обнаружены, классифицированы по интенсивности, подвергнуты контролю, количественно оценены монотонно возрастающими или убывающими числами.

На основании понятия "интенсивная величина" вводятся понятия физической величины (см. 2.1.1) и ее размера. Размер физической величины — количественное содержание в данном объекте свойства, соответствующего понятию ФВ.

Интенсивные величины отображаются путем количественного, главным образом экспертного, оценивания, при котором свойства с большим размером отображаются большим числом, чем свойства с меньшим размером. Интенсивные величины оцениваются при помощи шкал порядка и интервалов.

Объекты, характеризующиеся интенсивными величинами, могут быть подвергнуты контролю. Контроль — это процедура установления соответствия между состоянием объекта и нормой. Для реализации процедуры простейшего однопараметрового контроля свойства X необходимы образцовые объекты, которые характеризуют параметры, равные соответственно нижней X и верхней xd границам нормы, и устройство сравнения. Результат контроля Q определяется следующим уравнением:

6+8) Государственный метрологический  контроль В соответствии с законом «Об обеспечении единства измерений» государственный метрологический контроль и надзор осуществляются Государственной метрологической службой Госстандарта России. Государственный метрологический контроль и надзор (ГМК и Н), осуществляемые с целью проверки соблюдения метрологических правил и норм, распространяются па следующие сферы деятельности: 1 здравоохранение, ветеринарию, охрану окружающей среды, обеспечение без-опасности труда; 2торговые операции и взаимные расчеты 3 между покупателем и продавцом, в том числе на операции с применением игровых автоматов и устройств; 4государственные учетные операции; 5обеспечение обороны государства; 6геодезические и гидрометеорологические работы;  7 банковские, налоговые, таможенные и почтовые операции; 8производство продукции, поставляемой по контрактам для государственных нужд в соответствии с законодательством Российской Федерации; 9испытания и контроль качества продукции в целях определения соответствия обязательным требованиям государственных стандартов Российской Федерации; 10обязательная сертификация продукции и услуг; 11измерения, проводимые по поручению органов суда, прокуратуры, арбитражного суда, государственных органов управления Российской Федерации; 12регистрация национальных и международных спортивных рекордов. 13Все разрабатываемые, производимые, поступающие по импорту и находящиеся в эксплуатации средства измерений делятся на две группы:  1предназначенные для применения в сферах распространения ГМК и Н. Эти средства измерений признаются годными для применения после их испытаний и утверждения типа и последующих первичной и периодической поверок; 2не предназначенные для применения и не применяемые в сферах распространения ГМК и Н. За этими средствами измерений надзор со стороны государства (Госстандарта России) не проводится.

 

7) Экстенсивные  величины удовлетворяющие отношениям эквивалентности, порядка и аддитивности. Основное уравнение измерения. Если физическая величина проявляется в отношениях эквивалентности, порядка и аддитивности, то она может быть: обнаружена, классифицирована, проконтролирована и измерена. Эти величины, называемые экстенсивными, характеризуют обычно физические вещественные или энергетические свойства объекта, например массу тела, электрическое сопротивление проводника и др.  При измерении экстенсивной величины несчетное множество ее размеров отображается на счетное подмножество в виде совокупности чисел Q, которое также должно удовлетворять отношениям эквивалентности, порядка и аддитивности. Числа Q — это результаты измерений, они могут быть использованы для любых математических операций. Совокупность таких чисел Q должна обладать следующими свойствами: 1. Для проявления в отношении эквивалентности совокупность чисел Q, отображающая различные по размеру однородные величины, должна быть совокупностью одинаково именованных чисел. Это наименование является единицей ФВ или ее доли. Единица физической величины, [Q] — это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице. Она применяется для количественного выражения однородных ФВ. 2. Для проявления в отношениях эквивалентности и порядка число q1? отображающее большую по размеру величину Q1 > Q2, выбирается большим, чем число q2 , отображающее меньшую по размеру величину Q2. При этом в обоих случаях используется одна единица ФВ. Для выполнения данного условия в качестве искомой совокупности q,,..., qn выбирают упорядоченное множество действительных чисел с естественным отношением порядка. 3. Для проявления в отношениях эквивалентности, порядка и аддитивности отвлеченное число, равное оценке суммарной измеряемой величины Q, возникающей в результате сложения составляющих однородных величин Qi, должно быть равно сумме числовых оценок qi этих составляющих. Сумма именованных чисел Qi, отражающих составляющие, должна быть равна именованному числу Q, отражающему суммарную величину: Если реализовано условие  [Q] = [Qi], т.е. имеет место равенство размеров единиц у всех именованных чисем, отражающих суммарную величину Q и ее составляющие Qi, то в этом случае вводятся следующие понятия:  значение физической величины Q — это оценка ее размера в виде некоторого числа принятых для нее единиц; числовое значение физической величины q — отвлеченное число, выражающее отношение значения величины к соответствующей единице данной ФВ. Уравнение называют основным уравнением измерения. измерение — познавательный процесс, заключающийся в сравнении путем физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

 

9) шкалы измерений

ШКАЛА ИЗМЕРЕНИЙ - основополагающее понятие метрологии, позволяющее количественно или к.-л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-pa), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют множество, элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа "эквивалентность" (равенство), "больше", "меньше", возможность "суммирования" элементов или "деления" одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,- на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются: множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит. задач) описывающая логич. структуру рассматриваемого свойства этого объекта.В соответствии с логич. структурой свойств в теории измерений принято в основном различать 5 типов Ш. и.: шкалы наименований, порядка, разностей (интервалов), отношений и абс. шкалы

По мере развития метрологии наблюдается тенденция рассматривать в качестве объектов измерений все новые, и не только физические, свойства и соответствующие им величины. Так, напр., формируется и описан метрологич. подход к изучению и описанию свойств биол., психологич., социальных (в т. ч. экономических) систем, создаются новые и совершенствуются уже существующие Ш. и.

10) Международные организации по  метрологии. Международная организация  мер и весов.

Международные метрологические организации, организации, созданные на основе международных соглашений для осуществления и хранения основных единиц физических величин и для достижения международного единства мер. В области метрологии, измерительной техники и приборостроения имеется (1973) три Международные метрологические организации: организация стран - членов Метрической конвенции (1875), Международная организация законодательной метрологии (1956) и Международная конфедерация по измерительной технике и приборостроению (1958).

Международная организация мер и весов (МОМВ) – межправительственная организация, в состав которой входит Международное бюро мер и весов (МБМВ), основной задачей которого является хранение, совершенствование и сличение национальных и международных эталонов, совершенствование метрической системы измерений и т.п. Например, принятие международной системы единиц (СИ), нового определения секунды и метра. Международная организация законодательной метрологии (МОЗМ; L' Organisation Internationale de Metrologie legale - OIML), насчитывает 37 стран-членов и 8 стран-корреспондентов (1972). В задачи этой организации входят создание центра документации и информации о национальных метрологических службах и унификация метрологических правил, устанавливаемых и контролируемых правительственными органами. В рамках МОЗМ существует Международное бюро законодательной метрологии (Париж). Его деятельностью руководит Международный комитет законодательной метрологии. Международные конференции по законодательной метрологии созываются не реже 1 раза в 6 лет. Международная конфедерация по измерительной технике и приборостроению (ИМЕКО; International Measurement Confederation) объединяет 19 национальных научно-технических обществ по измерительной технике и приборостроению (1972).

 

11) Измерение и  его основные операции. Структурная  схема измерения 

Все измеряемые ФВ можно разделить на две группы:

1непосредственно измеряемые, которые могут быть воспроизведены с заданными размерами и сравнимы с подобными, например длина, масса, время;

2 преобразуемые с заданной  точностью в непосредственно  измеряемые величины, например температура, плотность. Такое преобразование осуществляется с помощью операции измерительного преобразования.

Суть простейшего прямого измерения состоит в сравнении размера ФВ Q с размерами выходной величины регулируемой многозначной меры q[Q] (см. 2.1.4). Условием реализации процедуры прямого измерения является выполнение следующих элементарных операций:

1 измерительного преобразования  измеряемой ФВ X в другую ФВ Q, однородную или неоднородную с ней;

• воспроизведения ФВ Qм заданного размера N[Q], однородной преобразованной величиной Q;

• сравнения однородных ФВ: преобразованной Q и воспроизводимой мерой qm= N[Q].

Структурная схема измерения показана на рис. 2.4. Для полу чения результата измерения необходимо обеспечить выполнение при N = q условия:   

  погрешность сравнения величин Q и qm должна быть минимизирована. В этом случае результат измерений находится как X = F-1{q[Q]}, где F-1 — операция, обратная операции F, осуществляемой при измерительном преобразовании.


 

12) Международная организация законодательной  метрологии. Международная организация законодательной метрологии (МОЗМ) была создана в 1955году. Организация объединяет более 80 государств. Госстандарт РК осуществляет сотрудничество с МОЗМ. 
Цели МОЗМ: 1 разработка общих вопросов законодательной метрологии, в том числе установление классов точности средств измерений, обеспечение единообразия определения типов, образцов и систем измерительных приборов;

2рекомендации по их  испытаниям для унификации метрологических характеристик;

3установление порядка  поверки и калибровки средств  измерений; 4гармонизация поверочной аппаратуры, методов сличения, поверок и аттестации эталонных, образцовых и рабочих средств измерений;

5выработка оптимальных  форм организации метрологических  служб; 6оказание научно-технического содействия развивающимся странам в создании и организации работ метрологических служб и их оснащение надлежащим оборудованием;

7установление единых принципов  подготовки кадров в области  метрологии.

К числу современных задач МОЗМ относится проведение исследований методов поверки средств измерений у их изготовителей с учётом действующих на предприятиях систем управления качеством, соответствующих стандартам ИСО 9000. 
Высший руководящий орган МОЗМ – Международная конференция законодательной метрологии, которая созывается 1 раз в 4 года. В работе конференции могут участвовать не только страны-члены, но и другие страны, а также различные международные союзы, деятельность которых связана с метрологией. Решения МОЗМ носят рекомендательный характер. 
Исполнительным органом МОЗМ является Международный комитет законодательной метрологии, состоящий из представителей каждой из стран-членов МОЗМ. 
Консультативным органом является Совет президента, в состав которого входят два вице-президента, директор Международного бюро законодательной метрологии и пять наиболее активных членов Международного комитета законодательной метрологии. 
Решения принимаются обычно на сессиях Комитета, которые проводятся ежегодно, а в особых случаях – путём переписки. Резолюции, принимаемые Комитетом, действительны при единогласной поддержке всех его членов. 
Работу Комитета и Конференции координирует Международное бюро законодательной метрологии. Бюро издаёт информационные материалы, ведёт фонд документации, занимается пропагандой достижений в области метрологии. Ежеквартально издается «Бюллетень МОЗМ». Официальным языком МОЗМ является французский язык. 
Рабочими органами МОЗМ являются технические комитеты (ТК) и подкомитеты (ПК). В рамках ТК создаются национальные и международные рабочие группы

 

13) Основные элементы  процесса измерений

Измерение — сложный процесс, включающий в себя взаимодействие целого ряда его структурных элементов. К ним относятся: измерительная задача, объект измерения, принцип, метод и средство измерения и его модель, условия измерения, субъект измерения, результат и погрешность измерения. Эти элементы и их взаимосвязи показаны на рис. 2.5 в виде структурной схемы. Из нее видно, что процесс измерения протекает по двум параллельным ветвям, содержащим соответствующие друг другу элементы, относящиеся к реальности (верхняя ветвь) и ее отражению, или познанию (нижняя ветвь). Элементы обеих ветвей, неразрывно связанных между собой, соответствуют друг другу по типу "реальность — отражение (модель)".

Первым начальным элементом каждого измерения является его задача (цель). Задача любого измерения заключается в определении значения выбранной (измеряемой) ФВ с требуемой точностью в заданных условиях. Постановку задачи измерения осуществляет субъект измерения — человек. При постановке задачи конкретизируется объект измерения, в нем выделяется измеряемая ФВ и определяется (задается) требуемая погрешность измерения.

Объект измерения — это реальный физический объект, свойства которого характеризуются одной или несколькими измеряемыми ФВ. Он обладает многими свойствами и находится в многосторонних и сложных связях с другими объектами. Субъ ект измерения — человек принципиально не в состоянии представить себе объект целиком, во всем многообразии его свойств и связей. Вследствие этого взаимодействие субъекта с объектом возможно только на основе математической модели объекта.

Математическая модель объекта измерения — это совокупность математических символов (образов) и отношений между ними, которая адекватно описывает интересующие субъекта свойства объекта измерения.

Априорная информация, т.е. информация об объекте измерения, известная до проведения измерения, является важнейшим фактором, обуславливающим его эффективность. При полном отсутствии этой информации измерение в принципе невозможно, так как неизвестно, что же необходимо измерить, а следовательно, нельзя выбрать нужные средства измерений. При наличии априорной информации об объекте в полном объеме, т.е. при известном значении измеряемой величины, измерения попросту не нужны. Указанная информация определяет достижимую точност измерений и их эффективность.  

Принцип измерений — совокупность физических принципов, на которых основаны измерения, например применение эффекта Джозефсона для измерения электрического напряжения или эффекта Доплера для измерения скорости.Метод измерения — это прием или совокупность приемов сравнения измеряемой ФВ с ее единицей в соответствии с реализованным принципом измерения. Метод измерения должен по возможности иметь минимальную погрешность и способствовать исключению систематических погрешностей или переводу их в разряд случайных.

14) Основные международные нормативные  документы по метрологии

Для реализации на практике единства измерений в международном масштабе необходимы соответствующие нормативные документы, устанавливающие рекомендации, позволяющие обеспечить единство измерений, и введенные в национальные системы нормы и правила в области метрологии. Такие нормативные документы разработаны и разрабатываются по мере возникновения новых потребностей международными организациями, о которых сказано выше. Международные нормативные документы по содержанию и области применения охватывают четыре составляющие метрологической практики: 1терминологию в области метрологии; 2единицы величин, их наименование,обозначение и определение;3требования к метрологическим характеристикам средств измерений;4способы выражения погрешностей результатов измерений величин.В области терминологии важнейшим документом является Международный словарь основных и общих терминов в метрологии (второе издание в 1993 г.). В подготовке словаря принимали участие специалисты, назначенные семью международными организациями, в число которых входят ИСО, МЭК, МОЗМ, МБМВ. Публикует словарь ИСО, которой и принадлежит (конкретно Метрологической группе) идея его создания. Цель словаря — установить приемлемые для широких кругов термины с описанием отражаемых ими понятий. Словарь содержит шесть разделов: Величины и единицы; Измерения; Результаты измерений; Средства измерений; Характеристика средств измерений; Эталоны. Кроме этого общего словаря, издается Словарь по законодательной метрологии, в котором освещается деятельность государственных метрологических служб в различных странах мира. Издает этот словарь Международная организация законодательной метрологии.В области единиц величин главным документом является Международная система единиц СИ, принятая в 1960 г. на XI Генеральной конференции по мерам и весам. В последующий период эта система уточнялась и развивалась. Международная система единиц СИ — это основа унификации применяемых единиц измерения для обеспечения единства измерений. С развитием научно-технического прогресса повышаются требования к степени точности измерений национальных эталонов. А это, в конечном счете, достигается пересмотром трактовки основных и производных единиц СИ, реализацией их на более высоком уровне точности. Придавая особую значимость систематизации всех материалов по совершенствованию Международной системы единиц, Международное бюро мер и весов опубликовало сборник "Международная система единиц СИ", который расценивается как важнейший основополагающий международный нормативный документ по метрологии. С 1970 г. вышло шесть изданий этого документа на французском языке, а также осуществлен перевод, правда, не официальный, на английский язык.Величинами и единицами в области метрологии занимаются и крупнейшие международные организации — ИСО и МЭК. ИСО/ТК12 "Величины, единицы, обозначения, переводные множители" занимается унификацией наименований и обозначений физических единиц, результатом чего являются международные стандарты. Так, международные стандарты ИСО 1000 "Единицы CИ и рекомендации по использованию их дольных и кратных и других единиц" и ИСО 31 "Величины и единицы" являются основополагающими международными нормативными документами по унификации величин и единиц, широко применяемых в научных и технических областях.

 

16)Правовые основы метрологической деятельности в РФ. Основные положения закона «Об обеспечении единства измерений»

В 1993 г. принят Закон РФ "Об обеспечении единства измерений". До того по существу не было законодательных норм в области метрологии. Правовые нормы устанавливались постановлениями Правительства. По сравнению с положениями этих постановлений Закон установил немало нововведений - от терминологии до лицензирования метрологической деятельно-сти в стране. Установлено четкое разделение функций государственного метрологического контроля и государственного метрологического надзора; пересмотрены правила калибровки, введена добровольная сертификация средств измерений и др. Основные положения Закона "Об обеспечении единства измерений".

Цели Закона состоят в следующем:

1)защита прав и законных  интересов граждан, установленного  правопорядка и экономики Российской  Федерации от отрицательных последствий  недостоверных результатов измерений;

2_содействие научно-техническому  и экономическому прогрессу на  основе применения государственных  эталонов единиц величин и  использования результатов измерений  гарантированной точности, выраженных  в допускаемых к применению  в стране единицах;

3_создание благоприятных  условий для развития международных и межфирменных связей;

4) регулирование отношений  государственных органов управления  Российской Федерации с юридическими  и физическими лицами по вопросам  изготовления, выпуска, эксплуатации, ремонта, продажи и импорта средств  измерений;

5_адаптация российской  системы измерений к мировой  практике.

Основные статьи Закона устанавливают

1_организационную структуру  государственного управления обеспечением  единства измерений;

2_нормативные документы  по обеспечению единства измерений;

3)единицы величин и  государственные эталоны единиц  величин;

4)средства и методики  измерений.

15) методы и принципы измерений

Принцип измерений совокупность физических принципов, на которых основаны измерения, например применение эффекта Джозефсона для измерения электрического напряжения или эффекта Доплера для измерения скорости.Метод измерения — это прием или совокупность приемов сравнения измеряемой ФВ с ее единицей в соответствии с реализованным принципом измерения. Метод измерения должен по возможности иметь минимальную погрешность и способствовать исключению систематических погрешностей или переводу их в разряд случайных.Методы измерения можно классифицировать по различным признакам. Известна [13] классификация по основным измерительным операциям. Она тесно связана с элементарными СИ, реализующими эти операции. Данная классификация ориентирована на структурное описание средств измерений и поэтому важна для измерительной техники, а также метрологии информационно-измерительных систем.Для метрологического анализа более важными являются традиционные классификации, основанные на следующих признаках. Первый из них — физический принцип, положенный в основу измерения. По нему все методы измерений делятся на электрические, магнитные, акустические, оптические, механические и т.д. В качестве второго признака классификации используется режим взаимодействия средства и объекта измерений. В этом случае все методы измерений подразделяются на статические и динамические. Третьим признаком может служить применяемый в СИ вид измерительных сигналов. В соответствии с ним методы делятся на аналоговые и цифровые.Наиболее разработанной является классификация по совокупности приемов использования принципов и средств измерений. По этой классификации различают метод непосредственной оценки и методы, сравнения . Сущность метода непосредственной оценки состоит в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) средств измерений, которые заранее проградуированы в единицах измеряемой величины или единицах других величин, от которых она зависит. Это наиболее распространенный метод измерения. Его реализуют большинство средств измерений.Простейшими примерами метода непосредственной оценки могут служить измерения напряжения электромеханическим вольтметром магнитоэлектрической системы или частоты импульсной последовательности методом дискретного счета, реализованным в электронно-счетном частотомере.Другую группу образуют методы сравнения: дифференциальный, нулевой, совпадений, замещения. К ним относятся все те методы, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Следовательно, отличительной особенностью этих методов сравнения является непосредственное участие мер в процессе измерения.При дифференциальном методе измеряемая величина X сравнивается непосредственно или косвенно с величиной Xм, воспроизводимой мерой. О значении величины X судят по измеряемой прибором разности DХ = X – Xм и по известной величине Хм, воспроизводимой мерой. Следовательно, Х = Хм+ DХ. При дифференциальном методе производится неполное уравновешивание измеряемой величины. Он сочетает в себе часть признаков метода непосредственной оценки и может дать весьма точный результат измерения, если только измеряемая величина и величина, воспроизводимая мерой, мало отличаются друг от друга. Например, если разность этих двух величин составляет 1% и измеряется с погрешностью до 1%, то тем самым погрешность измерения искомой величины уменьшается до 0,01% (если не учитывать погрешность меры).Примером дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое представляет соой искомую величину.Нулевой метод является разновидностью дифференциального метода. Его отличие состоит в том, что результирующий эффект сравнения двух величин доводится до нуля. Это контролируется специальным измерительным прибором высокой точности — нуль-индикатором. В данном случае значение измеряемой величины равно значению, которое воспроизводит мера. Высокая чувствительность нуль-индикаторов, а также выполнение меры с высокой точностью позволяют получить малую погрешность измерения.Метод замещения заключается в поочередном измерении прибором искомой величины и выходного сигнала меры, однородного с измеряемой величиной. По результатам этих измерений вычисляется искомая величина. Поскольку оба измерения производятся одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, погрешность результата измерения уменьшается в значительной мере. Так как погрешность прибора неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко используется в практике неэлектрических измерений. Примером может служить измерение длины при помощи штангенциркуля с нониусом. Примером использования данного метода в электрических измерениях является измерение частоты вращения тела посредством стробоскопа.

17)основные этапы измерений

Измерение - последовательность сложных и разнородных действий, состоящая из ряда этапов.

Первым этапом любого измерения является постановка измерительной задачи. Он включает в себя:

1сбор данных об условиях  измерения и исследуемой физической  величине, т.е. накопление априорной  информации об объекте измерения с последующим ее анализом;

2формирование модели объекта  и определение измеряемой величины, что является наиболее важным, особенно при решении сложных  измерительных задач. Измеряемая  величина определяется с помощью  принятой модели как ее параметр  или характеристика. В простых  случаях, т.е. при измерениях невысокой  точности, модель объекта в явном  виде не выделяется, а пороговое  несоответствие пренебрежимо мало;

3постановку измерительной  задачи на основе принятой  модели объекта измерения;

4выбор конкретных величин, посредством которых будет находиться  значение измеряемой величины;

5формулирование уравнения  измерения.

вторым этапом процесса измерения является планирование измерения. В общем случае оно выполняется в следующей последовательности:

1выбор методов измерений  непосредственно измеряемых величин  и возможных типов средств  измерений;

2априорная оценка погрешности  измерения;

3определение требований  к метрологическим характеристикам средств измерений и условиям измерений;

4выбор средств измерений  в соответствии с указанными  требованиями;

5выбор параметров измерительной  процедуры (числа наблюдений для  каждой измеряемой величины, моментов  времени и точек выполнения  наблюдений;

6подготовка средств измерений  к выполнению экспериментальных операций;

7обеспечение требуемых  условий измерений или создание  возможности их контроля.

Третий, главный этап измерения - измерительный эксперимент. В узком смысле он является отдельным измерением. В общем случае последовательность действий во время этого этапа следующая:

Последний этап измерения - обработка экспериментальных данных. В общем случае она осуществляется в последовательности, которая отражает логику решения измерительной задачи

Некоторые пункты данной последовательности могут отсутствовать при реализации конкретной процедуры обработки результатов измерений.

Задача обработки данных подчинена цели измерения и после выбора средства измерений однозначно вытекает из измерительной задачи и, следовательно, является вторичной.

Перечисленные выше этапы существенно различаются по выполняемым операциям и их трудоемкости. В конкретных случаях соотношение и значимость каждого из этапов заметно варьирует. Для многих технических измерений вся процедура измерения сводится к экспериментальному этапу, поскольку анализ и планирование, включая априорное оценивание погрешности, выбор нужных методов и средств измерений осуществляются предварительно, а обработка данных измерений, как правило, минимизируется.

Выделение этапов измерения имеет непосредственное практическое значение, а именно способствует своевременному осознанному выполнению всех действий и оптимальной реализации измерений. Это в свою очередь позволяет избежать серьезных методических ошибок, связанных с переносом проблем одного этапа на другой.

 

18)Государственная метрологическая служба РФ. Организационные основы ГМС.

осударственная метрологическая служба России (ГМС) представляет собой совокупность государственных метрологических органов и создается для управления деятельностью по обеспечению единства измерений.

Общее руководство ГМС осуществляет Госстандарт РФ, на который Законом "Об обеспечении единства измерений" возложены следующие функции: 1 межрегиональная и межотраслевая координация деятельности по обеспечению единства измерений; 2 представление Правительству РФ предложений по еди-ницам величин, допускаемым к применению; 3 установление правил создания, утверждения, хранения и применения эталонов единиц величин;

4 определение общих метрологических  требований к сред-ствам, методам и результатам измерений;

5 государственный метрологический  контроль и надзор;

6 контроль за соблюдением  условий международных договоров  РФ о признании результатов  испытаний и поверки средств  измерений; 7 руководство деятельностью Государственной метрологической службы и иных государственных служб обеспече-ния единства измерений;

8 участие в деятельности  международных организаций по  вопросам обеспечения единства  измерений;

9 утверждение нормативных  документов по обеспечению единства  измерений; 10 утверждение государственных эталонов; 11 установление межповерочных интервалов средств измерений; 12 отнесение технических устройств к средствам измерений; 13 установление порядка разработки и аттестации методик выполнения измерений;

14 ведение и координация  деятельности Государственных научных  метрологических центров (ГНМЦ), Государственной  метрологической службы, Государственной  служ-бы времени и частоты (ГСВЧ), Государственной службы стандартных образцов (ГССО), Государственной службы стандартных справочных данных (ГСССД); 15 аккредитация государственных центров испытаний средств измерений;

16 утверждение типа средств  измерения; 17 ведение Государственного реестра средств измерений; 18 аккредитация метрологических служб юридических лиц на право поверки средств измерений; 19 утверждение перечней средств измерений, подлежащих поверке; 20 установление порядка лицензирования деятельности юридических и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений; 21 организация и координация деятельности государственных инспекторов по обеспечению единства измерений; 22 организация деятельности и аккредитация метрологических служб юридических лиц на право проведения калибровочных работ; 23планирование и организация выполнения метрологических работ.

В состав ГМС входят семь государственных научных метрологических центров, Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) и около 100 цен-тров стандартизации и метрологии. Наиболее крупные среди на-учных центров - НПО "ВНИИ метрологии имени Д.И. Менделеева" (ВНИИМ, Санкт-Петербург), НПО "ВНИИ физико-технических и радиотехнических измерений" (ВНИИФТРИ, Московская область), Сибирский государственный научно-исследовательский институт метрологии (СНИИМ, Новосибирск), Уральский научно-исследовательский институт метрологии (УНИИМ, Екатеринбург). Научные центры являются держателями государственных эталонов, а также проводят исследования по теории измерений, принципам и методам высокоточных измерений, разработке научно-методических основ совершенствования российской системы измерений.


 

19) Основные постулаты теории измерений

Первым постулатом теории измерений  является постулат А:

в рамках принятой модели объекта исследования существует определенная физическая величина и ее истинное значение.Если считать, что деталь представляет собой цилиндр (модель – цилиндр), то она имеет диаметр, который может быть измерен. Если же деталь нельзя считать цилиндрической, например, ее сечение представляет собой эллипс, то измерять ее диаметр бессмысленно, поскольку измеренное значение не несет полезной информации о детали. И, следовательно, в рамках новой модели диаметр не существует. Измеряемая величина существует лишь в рамках принятой модели, то есть имеет смысл только до тех пор, пока модель признается адекватной объекту. Так как при различных целях исследований данному объекту могут быть сопоставлены различные модели, то из постулата А вытекаетследствие А1: для данной физической величины объекта измерения существует множество измеряемых величин (и соответственно их истинных значений).Из первого постулата теории измерений следует, что измеряемому свойству объекта измерений должен соответствовать некоторый параметр его модели. Данная модель в течение времени, необходимого для измерения, должна позволять считать этот параметр неизменным. В противном случае измерения не могут быть проведены.Указанный факт описывается постулатом В: истинное значение измеряемой величины постоянно.Выделив постоянный параметр модели, можно перейти к измерению соответствующей величины. Для переменной физической величины необходимо выделить или выбрать некоторый постоянный параметр и измерить его. В общем случае такой постоянный параметр вводится с помощью некоторого функционала. Примером таких постоянных параметров переменных во времени сигналов, вводимых посредством функционалов, являются средневыпрямленные или среднеквадратические значения. Данный аспект отражается вследствии В1: для измерения переменной физической величины необходимо определить ее постоянный параметр – измеряемую величину.При построении математической модели объекта измерения неизбежно приходится идеализировать те или иные его свойства.Модель никогда не может полностью описывать все свойства объекта измерений. Она отражает с определенной степенью приближения некоторые из них, имеющие существенное значение для решения данной измерительной задачи. Модель строится до измерения на основе априорной информации об объекте и с учетом цели измерения.Измеряемая величина определяется как параметр принятой модели, а его значение, которое можно было бы получить в результате абсолютно точного измерения, принимается в качестве истинного значения данной измеряемой величины. Эта неизбежная идеализация, принятая при построении модели объекта измерения, обусловливаетнеизбежное несоответствие между параметром модели и реальным свойством объекта, которое называется пороговым.Принципиальный характер понятия «пороговое несоответствие» устанавливается постулатом С: существует несоответствие измеряемой величины исследуемому свойству объекта (пороговое несоответствие измеряемой величины). Пороговое несоответствие принципиально ограничивает достижимую точность измерений при принятом определении измеряемой физической величины.Изменения и уточнения цели измерения, в том числе и такие, которые требуют повышения точности измерений, приводят к  необходимости изменять или уточнять модель объекта измерений и переопределять понятие измеряемой величины. Основной причиной переопределения является то, что пороговое несоответствие ранее принятого определения не позволяет повысить точность измерения до уровня требуемой. Вновь введенный измеряемый параметр модели также может быть измерен лишь с погрешностью, которая в лучшемслучае равна погрешности, обусловленной пороговым несоответствием. Поскольку принципиально невозможно построить абсолютно адекватную модель объекта измерения, то нельзяустранить пороговое несоответствие между измеряемой физической величиной и описывающим ее параметром модели объекта измерений.Отсюда вытекает важное следствие С1: истинное значение измеряемой величины отыскать невозможно.Модель можно построить только при наличии априорной информации об объекте измерения. При этом, чем больше информации, тем более адекватной будет модель и соответственно точнее и правильнее будет выбран ее параметр, описывающий измеряемую физическую величину. Следовательно, увеличение априорной информации уменьшает пороговое несоответствие.Данная ситуация отражается в следствииС2: достижимая точность измерения определяется априорной информацией об объекте измерения.

20) Классификация измерений .

Измерения делятся на:

1прямые и косвенные  измерения,

2совокупные и совместные  измерения,

3абсолютные и относительные  измерения,

4однократные и многократные  измерения,

5статические и динамические  измерения,

6равноточные и неравноточные  измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно.

В ходе прямых измерений искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

Q = х,где Q – измеряемая величина,  х – результат измерения.

Косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. При косвенных измерениях искомое значение величины рассчитывают на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),где X, Y, Z,… –  результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера), в противоположность прямым измерениям, при которых прибор выдает готовый результат. Классическими примерами косвенных измерений можно считать нахождение значения угла треугольника по измеренным длинам сторон, определение площади треугольника или другой геометрической фигуры и т.п. Один из наиболее часто встречающихся случаев применения косвенных измерений– определение плотности материала твердого тела. Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин. На этом и построено различение совокупных и совместных измерений.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

Реально к совокупным измерениям следует отнести те, при которых осуществляется измерение нескольких одноименных величин, например, длинL1, L2, L3 и т.д. Подобные измерения выполняют на специальных устройствах для одновременного измерения ряда геометрических параметров валов.

Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Совместные измерения подразумевают измерение нескольких неодноименных величин (X, Y, Z и т.д.).

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы, в том числе градуированные в единицах измеряемой физической величины, либо в некоторых относительных единицах, в том числе и в неименованных. В соответствии с этим принято различать абсолютные и относительные измерения.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах, и что именно такое понимание находит все большее и большее применение в метрологии.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Динамическое измерение – измерение изменяющейся по размеру физической величины

21) Понятие об испытании и контроле

Испытанием называется экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него при его функционировании, а также моделировании объекта и (или) воздействий (ГОСТ 16504-91). Экспериментальное определение характеристик свойств объекта при испытаниях может проводиться путем использования измерений, оценивания и контроля. Объектом испытаний является продукция или процессы ее производства и функционирования. В зависимости от вида продукции и программы испытаний объектом может быть как единичное изделие, так и их партия. Объектом испытания может также быть макет или модель изделия. Важнейшими признаками любых испытаний являются:1 принятие на основе их результатов определенных решении по объекту испытаний, например о его годности или забраковке, о возможности предъявления на следующие испытания и т.д.;2 задание требуемых реальных или моделируемых условий испытаний. Под условиями испытаний понимается совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. В нормативно-технических документах на испытания конкретных объектов должны быть определены нормальные условия испытаний.

В зависимости от вида испытаний готовой продукции их подразделяют на квалификационные, приемосдаточные периодические и типовые. Целью испытаний следует считать нахождение истинного значения параметра, определенного не при тех реальных условиях, в которых он фактически может находится в ходе испытаний, а в заданных номинальных условиях испытания. Реальные условия испытаний практически всегда отличаются от номинальных, поскольку установить параметры условий испытаний абсолютно точно невозможно. Следовательно, результат испытания всегда имеет погрешность, возникающую не только из-за погрешности определения искомой характеристики, но и из-за неточного установления номинальных условий испытания. Результатом испытаний называется оценка характеристик свойств объекта, установления соответствия объекта заданным требованиям, данные анализа качества функционирования объекта в процессе испытаний. Результат испытаний характеризуется точностью — свойством испытаний, описывающим близость их результатов к действительным значениям характеристик объекта в определенных условиях испытаний.

Контроль — это процесс определения соответствия значения параметра изделия установленным требованиям или нормам. Сущность всякого контроля состоит в проведении двух основных этапов. На первом из них получают информацию о фактическом состоянии некоторого объекта, о признаках и показателях его свойств. Эта информация называется первичной. На втором — первичная информация сопоставляется с заранее установленными требованиями, нормами, критериями. При этом выявляется соответствие или несоответствие фактических данных требуемым.

Контроль состоит из ряда элементарных действий: измерительного преобразования контролируемой величины; операции воспроизведения уставок контроля; операции сравнения; определения результата контроля. Контроль может быть классифицирован по ряду признаков

В зависимости от числа контролируемых параметров он подразделяется на однопараметровый, при котором состояние объекта определяется по размеру одного параметра, и многопараметровый, при котором состояние объекта определяется размерами многих параметров.По форме сравниваемых сигналов контроль подразделяется на аналоговый, при котором сравнению подвергаются аналоговые сигналы, и цифровой, при котором сравниваются цифровые сигналы.В зависимости от вида воздействия на объект контроль подразделяется на пассивный, при котором воздействие на объект не производится, и активный, при котором воздействие на объект осуществляется посредством специального генератора тестовых сигналов.В практике большое распространение получил так называемый допусковый контроль [26], суть которого состоит в определении путем измерения или испытания значения контролируемого параметра объекта и сравнение полученного результата с заданными граничными допустимыми значениями. Частным случаем допускового контроля является поверка средств измерений, в процессе которой исследуется попадание погрешностей средства измерений в допускаемые пределы.

22) Системы физических величин и их единиц. Понятия: Размер физической величины, Значение физической величины, Единица физической величины, размерность

В науке, технике и повседневной жизни человек имеет дело с разнообразными свойствами окружающих нас физических объектов. Эти свойства отражают процессы взаимодействия объектов между собой. Их описание производится посредством физических величин. Для того чтобы можно было установить для каждого объекта различия в количественном содержании свойства, отображаемого физической величиной, в метрологии введены понятия ее размера и значения. Размер физической величины — это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас ФВ. Значение физической величины — это оценка ее размера в виде некоторого числа принятых для нее единиц. Его получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения Q = q[Q], связывающим между собой значение ФВ Q, числовое значение q и выбранную для измерения единицу [Q]. В зависимости от размера единицы будет меняться числовое значение ФВ, тогда как размер ее будет одним и тем же. Единица физической величины — это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице, и которая применяется для количественного выражения однородных ФВ. Размер единиц ФВ устанавливается путем их законодательно закрепленного определения метрологическими органами государства. Важной характеристикой ФВ является ее размерность dim Q — выражение в форме степенного многочлена, отражающее связь данной величины с основными ФВ; коэффициент пропорциональности в нем принят равным единице: где L, М, Т, I — условные обозначения основных величин данной системы; a, b, g, h — целые или дробные, положительные или отрицательные вещественные числа. Показатель степени, в которую возведена размерность основной величины, называют показателем размерности. Если все показатели размерности равны нулю, то такую величину называют безразмерной.Размерность ФВ является более общей характеристикой, чем определяющее ее уравнение связи, поскольку одна и та же размерность может быть присуща величинам, имеющим разную качественную природу и различающимся по форме определяющего уравнения. Например, работа силы F на расстоянии L описывается уравнением A1= FL. Кинетическая энергия тела массой m, движущегося со скоростью v, равна А2 = mv2 / 2. Размерности этих качественно различных величин одинаковы.

 

23) Уравнения связи между числовыми значениями физических величин. Основные производные физической величины

Уравнения связи между числовыми значениями физических величин — уравнения, в которых под буквенными символами понимают числовые значения величин, соответствующие выбранным единицам. Вид этих уравнений зависит от выбранных единиц измерения. Они могут быть записаны в виде: где Ке — числовой коэффициент, зависящий от выбранной системы единиц. Например, уравнение связи между числовыми значениями площади треугольника и его геометрическими размерами имеет вид при условии, что площадь измеряется в квадратных метрах, а основание и высота соответственно в метрах и миллиметрах: C помощью уравнений связи между числовыми значениями ФВ формулируются определения одних величин на языке других и указываются способы их нахождения. Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.Обосновано, но в общем произвольным образом выбираются несколько ФВ, называемых основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.В названии системы ФВ применяют символы величин, принятых за основные. Например, система величин механики, в которой в качестве основных используются длина (L), масса (М) и время (Т), называется системой LMT. Действующая в настоящее время международная система СИ должна обозначаться символами LMTIQNJ, соответствующими символам основных величин: длине  (L), массе (М), времени (Т), силе электрического тока (I), температуре (Q), количеству вещества (N) и силе света (J).Совокупность основных и производных единиц ФВ, образованная в соответствии с принятыми принципами, называется системой единиц физических величин. Единица основной ФВ является основной единицей данной системы. В Российской Федерации используется система единиц СИ, введенная ГОСТ 8.417-81 "ГСИ. Единицы физических величин". В качестве основных единиц приняты метр, килограмм, секунда, ампер, кельвин, моль и канделла


 

24) Основные и производные единицы  физических величин. Когерентные  и некогерентные производные  единицы физических величин.

Производная единица — это единица производной ФВ системы единиц, образованная в соответствии с уравнениями, связывающими ее с основными единицами или же с основными и уже определенными производными. Производные единицы системы СИ, имеющие собственное название

Для установления производной единицы следует

1 выбрать ФВ, единицы которых принимаются в качестве основных;

2установить размер этих  единиц;

3выбрать определяющее  уравнение, связывающее величины, измеряемые  основными единицами, с величиной, для которой устанавливается  производная единица. При этом  символы всех величин, входящих  в определяющее уравнение, должны рассматриваться не как сами величины, а как их именованные числовые значения;

4приравнять единице (или  другому постоянному числу) коэффициент  пропорциональности Ке, входящий в определяющее уравнение. Это уравнение следует записывать в виде явной функциональной зависимости производной величины от основных.

Установленные таким способом производные единицы могут быть использованы для введения новых производных величин. Поэтому в определяющие уравнения наряду с основными единицами могут входить и производные, единицы которых определены ранее.

Производные единицы бывают когерентными и некогеренты-ми. Когерентной называется производная единица ФВ, связанная с другими единицами системы уравнением, в котором числовой множитель принят равным единице. Например, единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейного и равномерного движения точки: v = L/t, где L — длина пройденного пути, t — время движения. Подстановка вместо L и t их единиц в системе СИ дает v = 1м/c. Следовательно, единица скорости является когерентной.

 

25) Системные и  внесистемные единицы физических  величин. Кратные и дольные единицы  физических величин 

Единицы ФВ делятся на системные и внесистемные. Системная единица — единица ФВ, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными. Внесистемная единица — это единица ФВ, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на четыре вида:

• допускаемые наравне с единицами СИ, например: единицы массы — тонна; плоского угла — градус, минута, секунда; объема — литр и др. Внесистемные единицы, допускаемые к применению наравне с единицами СИ

допускаемые к применению в специальных областях, например: астрономическая единица, парсек, световой год — единицы длины в астрономии; диоптрия — единица оптической силы в оптике; электрон-вольт — единица энергии в физике и т.д.;

• временно допускаемые к применению наравне с единицами СИ, например: морская миля — в морской навигации; карат — единица массы в ювелирном деле и др. Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;

• изъятые из употребления, например: миллиметр ртутного столба — единица давления; лошадиная сила — единица мощности и некоторые другие.

Различают кратные и дольные единицы ФВ. Кратная единица — это единица ФВ, в целое число раз превышающая системную или внесистемную единицу. Например, единица длины километр равна 103 м, т.е. кратна метру. Дольная единица — единица ФВ, значение которой в целое число раз меньше системной или внесистемной единицы. Например, единица длины миллиметр равна 10~3 м, т.е. является дольной. Приставки для образования кратных и дольных единиц СИ

26) Принципы построения систем  единиц физических величин

Пусть имеется n уравнений связи между числовыми значениями N физических величин. В каждом уравнении имеется свой коэффициент пропорциональности, которому можно придать любое значение и, в частности, приравнять единице. Следовательно, в уравнениях связи коэффициенты являются известными числами, а ФВ — неизвестными. Реально всегда число N физических величин больше числа n уравнений связи. Если для N - n ФВ выбрать свои независимые единицы, то они становятся известными числами и n уравнений решаются относительно оставшихся n ФВ. Такая система считается оптимальной с теоретической точки зрения. Эти N - n ФВ называются, как известно, основными, а остальные n — производными.

На практике может оказаться удобным выбрать в качестве основных не

N - n ФВ, а большее их число, равное N - n + p. В этом случае уже нельзя придать всем коэффициентам любые численные значения, так как р коэффициентов становятся такими же неизвестными, как и оставшиеся в данном случае n - р производных ФВ.

Число основных единиц тесно связано с числом коэффициентов, стоящих в выражениях для физических законов и определениях. Коэффициенты пропорциональности, зависящие от выбора основных единиц и определяющих уравнений, называются фундаментальными, или мировыми постоянными [27, 28]. В системе СИ к ним относятся гравитационная постоянная, постоянная Планка, постоянная Больцмана и световая эффективность. Их следует отличать от так называемых специфических постоянных, характеризующих различные свойства отдельных вещеcтв, например массу электрона, его заряда и др.

Следует помнить, что фундаментальные константы присутствуют в выражениях для всех физических законов, но соответствующим выбором единиц определенное их число приравнено к каким-либо постоянным числам, чаще всего к единице. Далее будет показано, что чем больше основных единиц принято при построении системы, тем больше фундаментальных констант будет стоять в формулах. Сокращение числа основных единиц обязательно сопровождается уменьшением числа фундаментальных постоянных.

В предельном случае можно для каждой из ФВ выбрать свою единицу. Но тогда вместо системы единиц получится набор единиц, все п коэффициентов станут экспериментально определяемыми мировыми константами, производные величины исчезнут, а закономерные связи окажутся для практики малополезными. Поэтому ученые стремятся к созданию теоретически оптимальной системы единиц или по возможности близкой к ней.

Правила, по которым тот или иной комплекс единиц выбирают в качестве основного, не могут быть обоснованы теоретически. Единственными аргументами в пользу выбора могут служить лишь эффективность и целесообразность использования данной системы. Для практических целей измерения в качестве основных величин и единиц следует выбирать такие, которые можно воспроизвести с наибольшей точностью. Образование системы единиц базируется на объективных закономерных связях между физическими величинами и на произвольной, но разумной воле людей и их соглашениях, заключительным из которых является принятое на Генеральной конференции по мерам и весам.

При построении или введении новой системы единиц ученые руководствуются только одним единственным принципом — практической целесообразностью, т.е. удобством применения единиц в деятельности человека. В основу этого принципа положены следующие базовые критерии:

простота образования производных ФВ и их единиц, т.е. приравнивание к единице коэффициентов пропорциональности в уравнениях связи;

высокая точность материализации основных и производных единиц и передачи их размера нижестоящим эталонам;

неуничтожаемость эталонов основных единиц, т.е. возможность их воссоздания в случае утраты;

преемственность единиц, сохранение их разеров и наименований при введении новой системы единиц, что связано с исключением материальных и психологических затрат;

близость размеров основных и производных единиц к размерам ФВ, наиболее часто встречающихся в практике;

долговременность хранения основных и производных единиц их эталонами;

выбор в качестве основных минимального числа ФВ, отражающих наиболее общие свойства материи.

Приведенные критерии вступают в противоречие, поэтому путем соглашения выбирается наиболее выгодный для практики вариант.

27) Единая международная система  единиц (система СИ) была принята XI Генеральной конференцией по мерам и весам в 1960 г. На территории нашей страны система единиц СИ действует с 1 января 1982 г. в соответствии ГОСТ 8.417-81 "ГСИ. Единицы физических величин". Система СИ возникла не на пустом месте и является логическим развитием предшествовавших ей систем единиц СГС и МКГСС и др.В настоящее время широко применяются две системы единиц: СИ и СГС (симметричная, или гауссова). Система СГС существует более 100 лет и до сих пор используется в точных науках — физике, астрономии. Однако ее все более теснит система СИ - единственная система единиц ФВ, которая принята и используется в большинстве стран мира. Это обусловлено ее достоинствами и преимуществами перед другими системами единиц, к которым относятся:1универсальность, т.е. охват всех областей науки и техники;2унификация всех областей и видов измерений;3когерентность величин;4 возможность воспроизведения единиц с высокой точностью в соответствии с их определением;5упрощение записи формул в физике, химии, а также в технических науках в связи с отсутствием переводных коэффициентов;6 уменьшение числа допускаемых единц;,7 единая система образования кратных и дольных единиц, имеющих собственные наименования; 8 облегчение педагогического процесса в средней и высшей школах, так как отпадает необходимость в изучении множества систем единиц и внесистемных единиц;9 лучшее взаимопонимание при развитии научно-технических и экономических связей между различными станами. Исторически сложилось так, что закономерные научно обоснованные связи были установлены сначала в области геометрии и кинематики, затем динамики, термодинамики и электромагнетизма. Последовательно строились и системы единиц. В связи с этим общего решения всей совокупности уравнений связи можно было избежать, а их решение свести к последовательному определению единиц в соответствующих разделах физики.

 

28) воспроизведения единиц физических величин и передачи их размеров. Теория единства измерений              

 Информация о размерах единиц закладывается в средства измерений при их изготовлении и выпуске в обращение путем приписывания определенных значений мерам, отметкам шкал измерительных приборов, функциям преобразования измерительных преобразователей. Подобная метрологическая процедура называется градуировкой средств измерений. В некоторых случаях составляются градировочные таблицы или графики. Для ряда средств измерений, как правило, высокой точности, бывает необходимо определить поправки, используемые для уточнения результатов измерений, получены с помощью этих средств. Для этого определяют действительные значения величин, воспроизводимых мерами, или величин, соответствующих отметкам шкал измерительных приборов или определенным выходным сигналам измерительных преобразователей. Такая метрологическая процедура называется калибровкой средств измерений. Сохранность информации о размерах единиц, заложенной в средства измерений, в процессе их эксплуатации контролируется путем поверки средств измерений. Таким образом, путем градуировки, калибровки, поверки средств измерений осуществляется передача средствам измерений размеров единиц величин. Эти метрологические процедуры проводят путем сравнения значений величин, полученных с помощью данных средств измерений, с заведомо более точно известными значениями соответствующих величин. Следует отметить, что на каждом этапе передачи размера единицы от одного средства измерений к другому происходит накопление погрешностей. Поэтому, при значительном числе ступеней передачи размера единицы (значительное число разрядов ОСИ) простейшему из рабочих средств измерений можно гарантировать только весьма низкую точность. С другой стороны, при малом числе разрядов ОСИ и значительном количестве соподчиненных с ними средств измерений необходимо, с целью обеспечения оперативности Передачи размера единицы, увеличивать количество образцовых средств измерений каждого разряда. При этом существенно возрастает интенсивность использования эталона, что может привести к его преждевременному износу и потере требуемых метрологических свойств. Поэтому определение оптимального числа разрядов ОСИ для каждой из измеряемых величин является сложной технико-экономической задачей.Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все существующие СИ одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ.Воспроизведение единицы физической величины — это совокупность операций по материализации единицы ФВ с наивысшей в стране точностью посредством государственного эталона или исходного образцового СИ. Различают воспроизведение основной и производной единиц.Воспроизведение основной единицы — это воспроизведение единицы путем создания фиксированной по размеру ФВ в соответствии с определением единицы. Оно осуществляется с помощью государственных первичных эталонов. Например, единица массы — 1 килограмм (точно) воспроизведена в виде платиноиридиевой гири, хранимой в Международном бюро мер и весов в качестве международного эталона килограмма. Розданные другим странам эталоны имеют номинальное значение 1 кг. На основании последних международных сличений (1979) платиноиридиевая гиря, входящая в состав Государственного эталона РФ, имеет массу 1,000000087 кг.Воспроизведение производной единицы — это определение значения ФВ в указанных единицах на основании косвенных измерений других величин, функционально связанных с измеряемой. Так, воспроизведение единицы силы — Ньютона — осуществляется на основании известного уравнения механики F = mg, где m — масса тела; g — ускорение свободного падения.

29) Эталоны единиц физических величин.

Эталон — средство измерений (или комплекс СИ), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме СИ и утвержденное в качестве эталона в установленном порядке. Классификация, назначение и общие требования к созданию, хранению и применению эталонов устанавливает ГОСТ 8.057-80 "ГСИ. Эталоны единиц физических величин. Основные положения".

Конструкция эталона, его физические свойства и способ воспроизведения единицы определяются ФВ, единица которой воспроизводится, и уровнем развития измерительной техники в данной области измерений. Эталон должен обладать по крайней мере тремя взамосвязанными свойствами: неизменностью, воспроизводимостью и сличаемостью.

Неизменность — свойство эталона удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени, при этом все изменения, зависящие от внешних условий, должны быть строго определенными функциями величин, доступных точному измерению. Реализация этих требований привела к идее создания "естественных" эталонов различных величин, основанных на физических постоянных.

Воспроизводимость — возможность воспроизведения единицы ФВ (на основе ее теоретического определения) с наименьшей погрешностью для существующего уровня развития измерительной техники. Это достигается путем постоянного исследования эталона в целях определения систематических погрешностей и их исключения путем введения соответствующих поправок.

Сличаемостъ — возможность обеспечения сличения с эталоном других СИ, нижестоящих по поверочной схеме, в первую очередь вторичных эталонов, с наивысшей точностью для существующего уровня развития техники измерения. Это свойство предполагает, что эталоны по своему устройству и действию не вносят каких-либо искажений в результаты сличений и сами не претерпевают изменений при проведении сличений.

Различают следующие виды эталонов:

• первичный — обеспечивает воспроизведение и хранение единицы с наивысшей в стране (по сравнению с другими эталонами той же величины) точностью. Первичные эталоны — это уникальные СИ, часто представляющие собой сложнейшие измерительные комплексы, созданные с учетом новейших достижений науки и техники. Они составляют основу государственной системы обеспечения единства измерений;

• специальный — обеспечивает воспроизведение единицы в особых условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью не осуществима, и служит для этих условий первичным эталоном;

• государственный— это первичный или специальный эталон, официально утвержденный в качестве исходного для страны. Утверждение проводит главный метрологический орган страны. Государственные эталоны создаются, хранятся и применяются центральными метрологическими научными институтами страны. Точность воспроизведения единицы должна соответствовать уровню лучших мировых достижений и удовлетворять потребностям науки и техники. В состав государственных эталонов включаются СИ, с помощью которых воспроизводят и (или) хранят единицу ФВ, контролируют условия измерений и неизменность воспроизводимого или хранимого размера единицы, осуществляют передачу размера единицы. Государственные эталоны подлежат периодическим сличениями с государственными эталонами других стран;

• вторичный — хранит размер единицы, полученной путем сличения с первичным эталоном соответствующей ФВ. Вторичные эталоны являются частью подчиненных средств хранения единиц и передали их размеров, создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного эталона. В состав вторичных эталонов включаются СИ, с помощью которых хранят единицу ФВ, контролируют условия хранения и передают размер единицы.

По своему метрологическому назначению вторичные эталоны делятся на следующие:

• эталон-копия — предназначен для передачи размера единицы рабочим эталонам. Он создается в случае необходимости проведения большого числа поверочных работ с целью предохранения первичного или специального эталона от преждевременного износа. Эталон-копия представляют собой копию государственного эталона только по метрологическому назначению, поэтому он не всегда является его физической копией;

• эталон сравнения — применяется для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

• рабочий эталон — применяется для передачи размера единицы рабочим средствам измерений.


 

30) Поверочные схемы

Обеспечение правильной передачи размера единиц ФВ во всех звеньях метрологической цепи осуществляется посредством поверочных схем. Поверочная схема — это нормативный документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности, и утвержден в установленном порядке. Основные положения о поверочных схема приведены в ГОСТ 8.061-80 "ГСИ. Поверочные схемы. Содержание и построение". Поверочные схемы делятся на государственные, ведомственные и локальные.

• Государственная поверочная схема распространяется на все СИ данной ФВ, имеющиеся в стране. Она разрабатывается в виде государственного стандарта, состоящего из чертежа поверочной схемы и текстовой части, содержащей пояснения к чертежу.

• Ведомственная поверочная схема распространяется на СИ данной ФВ, подлежащие ведомственной поверке.

• Локальная поверочная схема распространяется на СИ данной ФВ, подлежащие поверке в отдельном органе метрологической службы.

Ведомственные поверочные схемы не должны противоречить государственным поверочным схемам для СИ одних и тех же ФВ. Они могут быть составлены при отсутствии государственной поверочной схемы. В них допускается указывать конкретные типы (экземпляры) СИ. Ведомственная и локальная поверочные схемы оформляют в виде чертежа Поверочная схема устанавливает передачу размера единиц одной или нескольких взаимосвязанных величин. Она должна включать не менее двух ступеней передачи размера. Поверочную схему для СИ одной и той же величины, существенно отличающихся по диапазонам измерений, условиям применения и методам поверки, а также для СИ нескольких ФВ допускается подразделять на части. На чертежах поверочной схемы должны быть указаны:

• наименования СИ и методов поверки;

• номинальные значения ФВ или их диапазоны;

• допускаемые значения погрешностей СИ;

• допускаемые значения погрешностей методов поверки. Правила расчета параметров поверочных схем и оформления чертежей поверочных схем приведены в ГОСТ 8.061-80 "ГСИ. Поверочные схемы. Содержание и построение" и в рекомендациях МИ 83—76 "Методика определения параметров поверочных схем".

 

31) Способы поверки  средств измерений 

Поверка — это операция, заключающаяся в установлении пригодности СИ к применению на основании экспериментально определяемых метрологических характеристик и контроля их соответствия предъявляемым требованиям. Основной метрологической характеристикой, определяемой при поверке СИ, является его погрешность. Она находится на основании сравнения поверяемого СИ с более точным СИ — рабочим эталоном. Различают поверки: государственную и ведомственную, периодическую и независимую, внеочередную и инспекционную, комплексную, поэлементную и др.

Основные требования к организации и порядку проведения поверки СИ приведены в правилах по метрологии ПР 50.2.006-94 "ГСИ. Поверка средств измерений. Организация и порядок проведения", а также в рекомендациях МИ 187—86 "ГСИ. Критерии достоверности и параметры методик поверки" и МИ 188—86 "ГСИ. Установление значений методик поверки".

Поверка выполняется метрологическим службами, которым дано на это право. Средство измерений, признанное годным к применению, оформляется выдачей свидетельства о поверке, нанесением поверительного клейма или иными способами, устанавливаемыми нормативно-техническими документами.

Меры могут быть поверены путем:

• сличения с более точной мерой посредством компарирующего прибора. Сличение мер с помощью компаратора осуществляется методами противопоставления или замещения. Общим для этих методов поверки СИ является выработка сигнала о наличии разности размеров сравниваемых величин. Если подбором образцовой меры этот сигнал будет сведен к нулю, то реализуется нулевой метод измерения;

• измерения воспроизводимой мерой величины измерительными приборами соответствующего класса точности. В этом случае поверка часто называется градуировкой. Градуировка — нанесение отметок на шкалу, соответствующих показаниям образцового СИ или же определение по его показаниям уточненных значений величины, соответствующих нанесенным отметкам на шкале рабочего СИ;

• калибровки, когда с более точной мерой сличается лишь одна мера набора или одна из отметок шкалы многозначной меры, а действительные размеры других мер определяются их взаимным сравнением в различных сочетаниях на приборах сравнения и при дальнейшей обработке результатов измерений.

Поверка измерительных приборов проводится методом:

• непосредственного сравнения измеряемых величин и величин, воспроизводимых образцовыми мерами соответствующего класса точности. Значения величин на выходе мер выбираются равными оцифрованным отметкам шкалы прибора. Наибольшая разность между результатами измерения и соответствующими им размерами мер является в этом случае основной погрешностью прибора;

• непосредственного сличения показаний поверяемого и некоторого образцового прибора при измерении одной и той же величины. Основой данного метода служит одновременное измерение одного и того же значения ФВ поверяемым и образцовым СИ. Разность показаний этих приборов равна абсолютной погрешности поверяемого средства измерений.

Существуют и другие методы поверки, которые, однако, используются гораздо реже. Они рассмотрены в [9, 55].

Важным при поверке является выбор оптимального соотношения между допускаемыми погрешностями образцового и поверяемого СИ. Обычно, когда при поверке вводят поправки на показания образцовых средств измерений, это соотношение принимается равным 1:3 (исходя из критерия ничтожно малой погрешности). Если же поправки не вводят, то образцовые СИ выбираются из соотношения 1:5. Соотношение допускаемых погрешностей поверяемых и образцовых СИ устанавливается с учетом принятого метода поверки, характера погрешностей, допускаемых значений ошибок I и II родов и иногда может значительно отличаться от указанных ранее цифр

32) Стандартные образцы. Стандартные  справочные данные

Для ряда областей измерений и в первую очередь для физико-химических измерений чрезвычайно перспективным средством повышения эффективности поверочных работ является применение стандартных образцов (СО). Правила работы с СО устанавливает ГОСТ 8.315—97 "ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения". Согласно этому документу, стандартный образец состава и свойств веществ и материалов — это средство измерений в виде вещества (материала), состав или свойства которого установлены аттестацией. Можно дать и другое определение: стандартный образец — образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величия, характеризующими свойство или состав этого вещества (материала).Стандартные образцы предназначены для обеспечения единства и требуемой точности измерений посредством:• градуировки, метрологической аттестации и поверки СИ;• метрологической аттестации методик выполнения измерений;• контроля показателей точности измерений;• измерения ФВ, характеризующих состав или свойства веществ и материалов, методами сравнения.По своему назначению СО исполняют роль мер, однако в отличие от "классических" мер они имеют ряд особенностей. Например, образцы состава воспроизводят значения ФВ, характеризующих состав или свойства именно того материала (вещества), из которого они изготовлены. Стандартные образцы, как правило, не являются изделиями, они реализованы обычно в виде части или порции однородного вещества (материала), причем эта часть явллется полноценным носителем воспроизводимой единицы ФВ, а не ее части. Эта особенность образцов отражена в требованиях к их однородности по составу и свойствам. Однородность материала, из которого сделан образец, имеет принципиальное значение, в то время как для меры такая характеристика часто является второстепенной.Стандартные образцы состава и свойств в отличие от мер характеризуются значительным влиянием неинформативных параметров (примесей, структуры материала и др.). При использовании СО очень часто необходимо учитывать функции влияния таких араметровВ связи с многообразием задач, решаемых с СО, их можно разделить на группы по ряду классификационных признаков. В зависимости от вида аттестуемой характеристики различают:• стандартные образцы состава — воспроизводят значения величин, характеризующих содержание определенных компонентов (химические элементы, их изотопы и др.);• стандартные образцы свойств — воспроизводят значения величин, характеризующих физические, химические, технические или другие свойства вещества, за исключением величин, характеризующих состав.В зависимости от сферы действия и области применения определяется уровень утверждения стандартных образцов. По этому признаку они делятся на государственные, отраслевые и стандартные образцы предприятий. Тем СО, которые включены в поверочные хемы, присваиваются разряды.Стандартные образцы объединяются в типы. Тип — это классификационная группировка образцов, определяющими признаками которых являются одно и то же вещество, из которого они изготовлены, и единая документация, по которой они выполнены. Типы СО допускаются к применению при условии их утверждения и регистрации в соответствующем реестре. Для каждого типа СО при их аттестации устанавливается срок действия (не более 10 лет) и определяются метрологические характеристики, которые нормируются в документации на их разработку и выпуск. К ним относятся:• аттестованное значение — значение аттестованной характеристики образца, им воспроизводимое, установленное при его аттестации и приводимое в свидетельстве с указанием погрешности;• погрешность аттестованного значения — разность между аттестованным и истинным значениями величины, воспроизводимой той частью образца, которая используется при измерении;• характеристика однородности — характристика свойства образца, выражающегося в постоянстве значения величины, воспроизводимой его различными частями, используемыми при измерениях• характеристика стабильности — характеристика свойства образца сохранять значения метрологических характеристик в установленных пределах в течение указанного в свидетельстве срока годности при соблюдении заданных условий хранения и применения;• функции влияния — зависимость метрологических характеристик образца от изменения внешних влияющих величин в заданных условиях применения.Возможно использование и других метрологических характеристик.

33) Средства измерений. Классификация средств измерений.

Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений.

К средствам измерений относятся: меры, измерительные преобразователи, измерительные приборы, измерительные установки и системы, измерительные принадлежности.

Мерой называют средство измерения, предназначенное для воспроизведения физических величин заданного размера. К данному виду средств измерений относятся гири, концевые меры длины и т.п. На практике используют однозначные и многозначные меры, а также наборы и магазины мер.

Стандартный образец — это должным образом оформленная проба вещества (материала), которая подвергается метрологической аттестации с целью установления количественного значения определенной характеристики.

Стандартным образцом является образец чистого цинка, который служит для воспроизведения температуры 419,527 °С по международной температурной шкале МТШ-90.

Поскольку при аттестации (поверке) также могут быть погрешности, меры подразделяют на разряды (1-го, 2-го и т.д. разрядов) и называют разрядными эталонами (образцовые измерительные средства), которые используют для поверки измерительных средств. Величина погрешности меры служит основой для разделения мер на классы, что обычно применимо к мерам, употребляемым для технических измерений.

Измерительный преобразователь — это средство измерений, которое служит для преобразования сигнала измерительной информации в форму, удобную для обработки или хранения, а также передачи в показывающее устройство. Преобразователи подразделяются на первичные (непосредственно воспринимающие измеряемую величину), передающие, на выходе которых величина приобретает форму, удобную для регистрации или передачи на расстояние; промежуточные, работающие в сочетании с первичными и не влияющие на изменение рода физической величины.

Измерительные приборы — это средства измерений, которые позволяют получать измерительную информацию в форме, удобной для восприятия пользователем. Различаются измерительные приборы прямого действия и приборы сравнения. Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. Изменения рода физической величины при этом не происходит. К приборам прямого действия относят, например, амперметры, вольтметры, термометры и т.п.

Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны. Такие приборы широко используются в научных целях, а также и на практике для измерения таких величин, как яркость источников излучения, давление сжатого воздуха.

Измерительные установки и системы - это совокупность средств измерений, объединенных по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин объекта измерений.

Измерительные принадлежности — это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности. Например, термометр может быть вспомогательным средством, если показания прибора достоверны при строго регламентированный температуре; психрометр — если строго оговаривается влажность окружающей среды.

По метрологическому назначению средства измерений делят на два вида — рабочие средства измерений и эталоны.

Рабочие средства измерений применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др.

Особым средством измерений является эталон.

Эталон — это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи ее размера другим средствам измерений.

От эталона единица величины передается разрядным талонам, а от них — рабочим средствам измерений.

34. Калибровка средств измерений. Российская система калибровки.

Калибровка средств измерений — это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и/или пригодности к применению средств измерений, не подлежащих государственному метрологическому контролю и надзору. Вывод о пригодности делает калибровочная лаборатория. Калибровка — добровольная операция и ее может выполнить также и метрологическая служба самого предприятия.

Российская система калибровки — совокупность субъектов деятельности и калибровочных работ, направленных на обеспечение единства измерений в сферах, не подлежащих государственному метрологическому контролю и надзору и действующих на основе установленных требований к организации и проведению калибровочных работ.

Средства калибровки -эталоны, установки и другие СИ, применяемые при калибров соответствии с установленными правилами.

Российская система калибровки.

Этот вид метрологической деятельности может осуществляться по двум направлениям: калибровка высокоточных средств измерений и калибровка образцовых и рабочих СИ.

Первое направление в метрологической практике традиционное и использовалось давно в тех случаях, когда по мере продвижения вверх по поверочной схеме от рабочих СИ к эталонам неизбежно сокращается число СИ различных по номинальному значению. На верхних ступенях поверочной схемы часто имеется СИ (мера, эталон) только одного значения. Известно, что повышение точности СИ неизбежно связано с сокращением диапазона измерений по их шкале. Поэтому на некоторой ступени поверочной схемы иногда разности поверяемых значений поверяемой и ближайшей к ней по разряду исходной меры превышает диапазон измерения измерительного прибора соответствующего данному разряду точности. В этих случаях поверка осуществляется способом калибровки.

Этот способ калибровки заключается в сравнении различных мер, их сочетаний или отметок шкал многозначных мер в различных комбинациях и вычислении по результатам этих сравнений действительных значений отдельных мер или отметок шкалы (или поправок к ним) исходя из известного значения одной из них. В результате сравнения получается система уравнений, решением которого находятся действительные значения мер. Если число уравнений равно числу мер, то действительные значения мер и погрешности их аттестации находят с помощью методов обработки результатов косвенных измерений. С целью повышения точности аттестации необходимо увеличивать число уравнений, что позволит определить  действительное значение мер методом обработки результатов совокупных измерений.

В организационную структуру Российской системы калибровки (РСК) входят: Центральный орган Российской системы калибровки (РСК) (Управление метрологии Госстандарта России), Совет Российской системы калибровки (РСК), Научно-методический центр Российской системы калибровки (РСК) (ВНИИметрологическая служба), аккредитующие органы Российской системы калибровки (РСК), метрологические службы юридических лиц, аккредитованные на право проведения калибровочных работ.

В качестве аккредитующих органов Российской системы калибровки (РСК) регистрируются ГНМЦ и органы ГМС по их заявкам.

Совет Российской системы калибровки (РСК) формируется из числа руководителей метрологических служб государственных органов управления, руководителей аккредитующих органов, руководителей аккредитованных метрологических служб юридических лиц, представителей отраслей и предприятий, научно-исследовательских институтов и объединений, ГНМЦ, органов ГМС, а также других заинтересованных в Российской системы калибровки (РСК) обществ и объединений. Председатель Совета Российской системы калибровки (РСК) избирается на 3 года членами Совета открытым голосованием на общем собрании. Совет собирается по инициативе Центрального органа Российской системы калибровки (РСК) не реже одного раза в год или по инициативе 1/3 ее состава для разрешения срочных вопросов, касающихся деятельности Российской системы калибровки (РСК).

Метрология

1. Основные представления теоретической метрологии: физические свойства и величины. Классификация физических величин.

2. Правовые основы  метрологической деятельности в  РФ. Основные положения закона  РФ «Об обеспечении единства  измерений».

3. Наиболее общие  свойства физических объектов. Свойства, проявляющие себя в отношении  эквивалентности. Понятие счета.

4. Государственная  метрологическая служба в РФ. Организационные основы государственной  метрологической службы.

5. Наиболее общие  свойства физических объектов. Интенсивные  величины, удовлетворяющие отношениям эквивалентности и порядка. Понятие величины и контроля.

6. Государственная  метрологическая служба в РФ. Государственный метрологический  контроль.

7. Наиболее общие  свойства физических объектов. Экстенсивные  величины удовлетворяющие отношениям эквивалентности, порядка и аддитивности. Понятия о единице величины и измерении. Основное уравнение измерения.

8. Государственная  метрологическая служба в РФ. Государственный метрологический  надзор.

9. Шкалы измерений.

10. Международные  организации по метрологии. Международная организация мер и весов.

11. Измерение и  его основные операции. Структурная  схема измерения.

12. Международные  организации по метрологии. Международная организация законодательной метрологии.

13. Основные элементы  процесса измерений.

14. Основные международные  нормативные документы по метрологии.

15. Принцип измерения. Методы измерений.

16. Правовые основы  метрологической деятельности в  РФ. Основные положения закона  РФ «Об обеспечении единства  измерений».

17. Основные этапы  измерений.

18. Государственная  метрологическая служба в РФ.   Организационные основы государственной  метрологической службы.

19. Постулаты теории  измерений.

20. Классификация  измерений.

21. Понятие об  испытании и контроле.

22. Системы физических  величин и их единиц. Понятия:  «размер физической величины», «значение физической величины», «единица физической величины», «размерность физической величины».

23. Системы физических  величин и их единиц. Уравнения связи между числовыми значениями физических величин. Основные и производные физические величины.

24. Системы единиц  физических величин. Основные и  производные единицы Физических  величин. Когерентные и некогерентные производные единицы физических

величин.

25. Системы единиц  физических величин. Системные и  внесистемные единицы физических  величин. Кратные и дольные единицы  физических величин.

26. Принципы построения  систем единиц физических величин.

27. Международная  система единиц (система СИ). Основные  и дополнительные единицы системы  СИ.

28. Воспроизведение  единиц физических величин и  передача их размеров. Понятие  о единстве измерений.

29. Воспроизведение  единиц физических величин и  передача их размеров. Эталоны  единиц физических величин.

30. Воспроизведение  единиц физических величин и  передача их размеров. Поверочные  схемы.

31. Воспроизведение  единиц физических величин и  передача их размеров. Способы  поверки средств измерений.

32. Воспроизведение  единиц физических величин и  передача их размеров. Стандартные  образцы. Стандартные справочные данные.

33. Средства измерений. Классификация средств измерений.

34. Калибровка средств  измерений. Российская система калибровки.

     

Сертификация(шпора).docx

— 153.03 Кб (Просмотреть файл, Скачать файл)

содержание.docx

— 20.88 Кб (Просмотреть файл, Скачать файл)

Информация о работе Шпаргалка по "Сертификации, стандартизации и метрологии"