Автор работы: Пользователь скрыл имя, 19 Февраля 2013 в 13:15, курсовая работа
Цель курсовой работы – рассмотреть системы эконометрических уравнений, их применение в эконометрике.
В связи с поставленной целью, мной были выделены задачи данной курсовой работы:
1. Понятие системы эконометрических уравнений;
2. Сущность проблемы идентифицируемости;
3. Особенности системы линейных одновременных эконометрических уравнений;
4. Методы наименьших квадратов;
5. Применение эконометрических уравнений.
Введение
Глава 1. Основные понятия эконометрики
1.1 Особенности эконометрического метода
1.2 Понятие эконометрических уравнений
1.3 Применение систем эконометрических уравнений
Глава 2. Системы эконометрических уравнений
2.1 Система независимых уравнений
2.2 Пример модели авторегрессии
2.3 Проблема идентифицируемости
2.4 Система линейных одновременных эконометрических уравнений
2.5 Методы наименьших квадратов
Заключение
Список литературы
Содержание
Введение
Глава 1. Основные понятия эконометрики
1.1 Особенности эконометрического метода
1.2 Понятие эконометрических уравнений
1.3 Применение систем эконометрических уравнений
Глава 2. Системы эконометрических уравнений
2.1 Система независимых уравнений
2.2 Пример модели авторегрессии
2.3 Проблема идентифицируемости
2.4 Система линейных
одновременных
2.5 Методы наименьших квадратов
Заключение
Список литературы
Введение
Объектом статистического
изучения в социальных науках являются
сложные системы. Измерение тесноты
связей между переменными, построение
изолированных уравнений
Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в экономических, биометрических социологических исследованиях важное место заняла проблема описания структуры связей между переменными системой так называемых одновременных уравнений или структурных уравнений.
Эконометрические
методы применяются для построения
крупных эконометрических систем моделей,
описывающих экономику той или
иной страны и включающих в качестве
составных элементов
В последние десятилетия методы эконометрики сыграли решающую роль в освоении и развитии автоматизации экономических расчетов разного уровня и назначения.
Определенный вклад в развитие системы эконометрических уравнений внесли советские экономисты, в их числе Е.Е. Слуцкий (1880-1948), Л.В. Канторович (1912-86) - лауреат Нобелевской премии по экономике 1975, и др., несмотря на ее замалчивание и трактовку как буржуазной, антимарксистской лженауки. Большая роль в ее реабилитации принадлежала академику B.C. Немчинову (1894-1964): написанная им статья «Эконометрия» (вышла в 1965) открыла для отечеств, экономистов возможности этого направления научной деятельности.
Цель курсовой работы
– рассмотреть системы
Предмет работы –
эконометрика как набор математическо-
Объект работы – системы эконометрических уравнений.
В связи с поставленной целью, мной были выделены задачи данной курсовой работы:
Понятие системы эконометрических уравнений;
Сущность проблемы идентифицируемости;
Особенности системы линейных одновременных эконометрических уравнений;
Методы наименьших квадратов;
Применение эконометрических уравнений.
Глава 1. Основные понятия эконометрики
1.1 Особенности эконометрического метода
Эконометрическая
модель — основное понятие эконометрии,
экономико-математическая модель, параметры
которой оцениваются с помощью
методов математической статистики.
Она выступает в качестве средства
анализа и прогнозирования
Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений, в которых отражается зависимость эндогенных величин (искомых) от внешних воздействий (текущих экзогенных величин) в условиях, описываемых параметрами модели, а также лаговыми переменными. Кроме регрессионных (как линейных, так и нелинейных) уравнений, применяются и другие математико-статистические модели.
Эконометрическая модель может быть представлена в двух формах: структурной и приведенной. В наиболее общем виде любую эконометрическую модель, построенную в виде системы линейных уравнений.
Эконометрический метод включает решение следующих проблем2:
качественный анализ
связей экономических переменных -
выделение зависимых и
подбор данных;
оценка параметров модели;
проверка ряда гипотез
о свойствах распределения
анализ мультиколлинеарности объясняющих переменных, оценка ее статистической значимости, выявление переменных, ответственных за мультиколлинеарность;
введение фиктивных переменных;
выявление автокорреляции, лагов;
выявление тренда,
циклической и случайной
проверка остатков на гетероскедастичность;
анализ структуры связей и построение системы одновременных уравнений;
проверка условия идентификации;
оценивание параметров
системы одновременных
моделирование на основе системы временных рядов: проблемы стационарности и коинтеграции;
построение рекурсивных моделей, ARIMA- и VAR- моделей;
• проблемы идентификации и оценивания параметров.
Эконометрическая
модель, как правило, основана на теоретическом
предположении о круге
Поэтому в качестве этапов эконометрического исследования можно указать3:
постановку проблемы;
получение данных, анализ их качества;
спецификацию модели;
оценку параметров;
интерпретацию результатов.
Этот список менее подробен, чем предыдущий, и включает те стадии, которые проходит любое исследование, независимо от того, на использование каких данных оно ориентировано: пространственных или временных.
1.2 Понятие эконометрических уравнений
Например, если изучается
модель спроса как соотношение цен
и количества потребляемых товаров,
то одновременно для прогнозирования
спроса необходима модель предложения
товаров, в которой рассматривается
также взаимосвязь между
В еще большей
степени возрастает потребность
в использовании системы
Так, расходы на конечное потребление в экономике зависят от валового национального дохода. Вместе с тем величина валового национального дохода рассматривается как функция инвестиций.
Система уравнений в эконометрических исследованиях может быть построена по-разному4.
Возможна система независимых уравнений, когда каждая зависимая переменная y рассматривается как функция одного и того же набора факторов x: y1 = a11x1 + a12x2 +…+a1mxm+ e1, y2 = a21x1 + a22x2 +…+a2mxm+ e2 yn = an1x1 + an2x2 +…+anm xm+ en.
Набор факторов x1 в каждом уравнении может варьировать. Например, модель вида y1 = f (x1,x2, x3, x4, x5,);y2 = f (x1, x3, x4, x5,);y3 = f (x2, x3, x5,);y4 = f (x3, x4, x5,).
Также является системой
независимых уравнений с тем
лишь отличием, что набор факторов
в ней видоизменяется в уравнениях,
входящих в систему. Отсутствие того
или иного фактора в уравнении
системы может быть следствием как
экономической
Каждое уравнение
системы независимых уравнений
может рассматриваться
В итоге система независимых уравнений при трех зависимых переменных и четырех факторах имеет вид: y1 = a01 + a11x1 + a12 x2 + a13 x3 + a14 x4 + e1,y2 = a02 + a21x1 + a22 x2 + a23 x3 + a24 x4 + e2,y3 = a03 + a31x1 + a32 x2 + a33 x3 + a34 x4 + e3.
Однако если зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении, то исследователь может строить модель в виде системы рекурсивных уравнений5: y1 = a11x1 + a12 x2 + … + a1m xm + e1,y2 = b21y1 + a21x1 + a22 x2 + … + a2m xm + e2,y3 = b31y1 + b32y2 + a31x1 + a32 x2 + … + a3m xm + e3, yn = bn1y1 + bn2y2 + bnn-1yn-1 + an1x1 + an2 x2 + … + anm xm + en.
В данной системе зависимая переменная у включает в каждое последующее уравнение в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором собственно факторов х. Примером такой системы может служить модель производительности труда и фондоотдачи вида
y1 = a11x1 + a12 x2 + a13 x3 + e1,y2 = b21y1 + a21x1 + a22 x2 + a23 x3 + e2
где у1 - производительность труда;
у2 - фондоотдача;
х1 - фондовооружонность труда;
х2 - энерговооружонность труда;
х3 - квалификация рабочих.
Как и в предыдущей
системе, каждое уравнение может
рассматриваться
Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях - в правую часть системы: y1 = b12* y2 + b13* y3 +… + b1n * yn + a11 * x1 + a12 * x2 +…+ a1m xm + e1,y2 = b21* y1 + b23* y3 +… + b2n * yn + a21 * x1 + a22 * x2 +…+ a2m xm + e2, yn = bn1* y1 + bn2* y2 +… + bnn-1 * yn-1 + an1 * x1 + an2 * x2 +…+ anm xm + en.
Система взаимозависимых уравнений получила название система совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные у одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений называется также структурной формой модели. В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.
Примером системы одновременных уравнений может служить модель динамики цены и заработной платы вида y1 = b12y2 + a11x1 + e1, y2 = b21y1 + a22x2 + a23 x3 + e2,
где у1 - темп изменения месячной заработной платы ;у2 - темп изменения цен;х1 - процент безработных;х2 - темп изменения постоянного капитала;х3 - темп изменения цен на импорт сырья.
В рассмотренных
классах систем эконометрических уравнений
структура матрицы
Представим систему эконометрических уравнений в матричном виде:
BY + ГX = E,
где В - матрица коэффициентов при зависимых переменных;
Y - вектор зависимых переменных;
Г - матрица параметров при объясняющих переменных;
Х - вектор объясняющих переменных;
Е - вектор ошибок.
Если матрица В диагональная, то рассматриваемая модель является системой независимых уравнений. Так, при трех зависимых и трех объясняющих переменных модель имеет вид: y1 = a01 + a11x1 + a12 x2 + a13 x3 + Е1,y2 = a02 + a21x1 + a22 x2 + a23 x3 + Е2,y3 = a03 + a31x1 + a32 x2 + a33 x3 + Е3.
Если матрица В треугольная (или может быть приведена к такому виду), то модель представляет собой систему рекурсивных уравнений. Так, если модель имеет вид: y1 = a01 + a11x1 + a12 x2 + Е1,y2 = a02 + b21y1 + a21 x1 + a23 x2 + Е2,y3 = a03 + b32y2 + a31 x1 + a32 x2 + Е2.
Т.е. зависимая переменная у1 первого уравнения участвует как объясняющая переменная во втором уравнении системы, а зависимая переменная у2 второго уравнения рассматривается как объясняющая переменная в третьем уравнении.
Если матрица В не является ни диагональной, ни треугольной, то модель представляет собой систему одновременных уравнений. Так, для модели вида y1 = a01 + b12y2 + a11x1 + a12 x2 +Е1,y2 = a02 + b21y1 + b23y3 + a23x3+ Е2,y3 = a03 + b31y1 + a32x2 + a33x3+Е3.