Автор работы: Пользователь скрыл имя, 10 Ноября 2015 в 14:53, реферат
Актуальность выбранной темы состоит в широком спектре применений теории игр на практике (биология, социология, математика, менеджмент и т.д.). Конкретно в экономике - в такие моменты, когда не срабатывают теоретические основы теории выбора в классической экономической теории, заключающиеся, например, в том, что потребитель делает свой выбор рационально, он полностью осведомлен о ситуации на данном рынке и о конкретном данном товаре. Именно поэтому в рамках написания контрольной работы была выбрана следующая тема для исследования: «Теория игр в институциональной экономике».
В этой игре доминирующая сторона каждого преступника - сознаться, т.к. ни один из игроков не знает действий другого, но прекрасно понимает, что если он даст возможность оппоненту признаться, то ему дадут 10 лет, и тогда для минимизации ущерба ему необходимо будет признаться тоже.
В игре «дилемма заключенных» следование каждым игроком личной выгоде приводит к неэффективному для группы результату. Если бы оба преступника молчали, то они были бы в лучшем положении - эффективным по Парето. Здесь равновесие по Нэшу неэффективное, ведь преступники могли бы получить по одному году, а получили по 5 лет.
В игре типа «Дилемма заключенных» можно предположить, что трудность выбора максимально полезной стратегии заключается в том, что преступники не смогли договориться, но даже в этом случае ни у одного из них нет гарантии в том, что оппонент не изменил бы своего решения в последний момент. Основная проблема в ситуациях такого типа - отсутствие надежного, застуживающего доверия обязательства со стороны каждого из игроков.
Обязательство будет надежным, если одна из сторон видит, что другая сторона лишена возможности нарушить это обязательство.[1, с.20]
Институт, который позволяет достичь эффективного для группы результата в ситуации «дилемма заключенных», содержит механизм принуждения к соблюдению правил. Чтобы понять, что представляет собой этот механизм принуждения, рассмотрим следующую игру.
Игра «Два пулеметчика».
Два пулеметчика на двух изолированных постах должны отразить атаку врага. Каждый должен выбрать одну из двух стратегий: сражаться или дезертировать. Если оба пулеметчика останутся на своих постах и будут сражаться, то атака врага будет отбита. Если оба пулеметчика дезертируют, то враг сможет прорваться, и они попадут в плен. Если один из них останется на посту, а другой дезертирует, то тот, кто будет сражаться, даст возможность другому пулеметчику благополучно убежать, затем враг прорвется, и сражающийся пулеметчик будет убит. Выигрыши обоих игроков представлены в матрице игры (таблица 3).
Таблица 3. Игра «Два пулеметчика»
Пулеметчик 2 | |||
Сражаться |
Дезертировать | ||
Пулеметчик 1 |
Сражаться |
1; 1 |
-2; 2 |
Дезертировать |
2; -2 |
-1; -1 |
Эта ситуация представляет собой классическую дилемму заключенных. [1, с.21] Результат игры - оба пулеметчика дезертируют и попадают в плен - неэффективен не только с точки зрения интересов командования и страны, которую они защищали, но и с точки зрения их собственных интересов.
В этой ситуации возможны следующие решения: (заминировать подходы к постам, что изменит выигрыши в игре и взаимная солидарность будет обеспечена;) ввести строжайшую дисциплину в подразделении, где служат пулеметчики. Знание того, что подразделение дисциплинированное, создаст у каждого солдата уверенность в другом игроке. Угроза наказания перевесит соблазн дезертировать. В этом случае игра будет иметь такой же вид, как и в случае а); (иногда наиболее эффективным механизмом принуждения может быть представление о чести, которое есть у игроков. В данном случае действует внутренний механизм принуждения и матрица игры принимает следующий вид (таблица 4).
Таблица 4. Игра «Два пулеметчика»
Пулеметчик 2 | |||
Сражаться |
Дезертировать | ||
Пулеметчик 1 |
Сражаться |
1; 1 |
-1; -2 |
Дезертировать |
-2; -1 |
-2; -2 |
При таком раскладе дезертир, даже если ему удастся сбежать, обесчестит свое имя, поэтому его выигрыш 2 в таблице 3 здесь будет проигрышем -2, а оставшийся пулеметчик погибнет, но станет героем, поэтому его выигрыш уже будет -1. Если же они дезертируют вдвоем, то они мало того, что попадут в плен, так еще и обесчестят свое имя и выигрыш каждого из них составит -2.
Ситуация координации. [1, с.24]
Самым простым примером института, который возникает в ситуации координации, являются правила дорожного движения. На примере именно этого института мы и будем рассматривать ситуацию типа «Координационная игра».
Таблица 5. «Координационная игра»
Водитель 2 | |||
Правая |
Левая | ||
Водитель 1 |
Правая |
1; 1 |
0; 0 |
Левая |
0; 0 |
1; 1 |
Если автомобили движутся по разным сторонам дороги, то для того чтобы разъехаться, водителям нужно останавливаться и вести переговоры, чреватые издержками, поэтому в этом случае их выигрыши равны нулю. Если оба выбирают правую сторону дороги или оба водителя выбирают левую, то их выигрыши составляют по единице. Интересы водителей в этом игре не противоречат друг другу, они совпадают, поэтому здесь нет необходимости в принуждении. Но проблема в этой игре возникает в связи с тем, что здесь появляются два равноценных равновесия по Нэшу, и трудность заключается в том, чтобы осуществить выбор из этих двух равноценных результатов. Для того чтобы игроки скоординировали свой выбор, нужен какой-то знак, сигнал, который приведет их в фокальную точку. В качестве такого знака и возникает социальная норма правостороннего (или левостороннего) движения, которая представляет собой простейшую форму института. Каким образом возникает этот институт? Возможны два основных пути его появления:
1. установление института
в централизованном порядке
2. эта социальная норма
может возникнуть эволюционным
путем. В Англии не было какого-либо
заметного события, которое породило
бы господствующую норму
Итак, мы видим, что в ситуации координации институт необходим вследствие множественности возможных равновесий. Институт, возникающий в этой ситуации, не нуждается в специальном механизме принуждения, людям нужен лишь знак, сигнал о том, какое из равновесий им выбрать, ведь в ситуации координации они заинтересованы в нахождении единого решения.
3. Ситуация неравенства. [1, с.27]
Для того чтобы выяснить суть ситуации неравенства и институтов, возникающих в ней, представим себе некое аграрное общество до установления в нем прав собственности.
В этом обществе живут два пастуха - А и В, и есть два пастбища - 1 и 2. Пастбище 1 - более плодородное, чем пастбище 2. Расстояние от жилищ обоих пастухов до каждого из пастбищ одинаковое. Каждую весну перед пастухами встает дилемма: на какое пастбище гнать свои стада. Оба пастуха предпочитают пасти овец на более плодородном пастбище 1, но в этом случае пастбище быстро истощается, и результат будет хуже, чем в том случае, если пастухи пасли бы свои стада на разных пастбищах. Следовательно, наибольший выигрыш пастухи получают, если пасут овец на разных пастбищах. Выигрыши пастухов представлены в матрице игры (таблица 6).
Таблица 6. Ситуация неравенства
Пастух В | |||
Пастбище 1 |
Пастбище 2 | ||
Пастух А |
Пастбище 1 |
2; 2 |
8; 4 |
Пастбище 2 |
4; 8 |
1; 1 |
Для решения возникшей проблемы вводится институт прав собственности. Пастух А получает в свою собственность пастбище 1, а пастух В - пастбище 2. Оба пастуха выигрывают от передачи пастбищ в частную собственности, однако пастух А выигрывает в большей степени, чем пастух В, поскольку первое пастбище более плодородное. При решении проблемы координации возникает неравенство между пастухами.
Право собственности функционирует, с одной стороны, в качестве информации, указывающей, на каком пастбище каждый из пастухов должен пасти свое стадо. Но этим функции института собственности не исчерпываются. Право собственности выполняет не только функции координации, они служат также сохранению неравенства. Предположим, что оба пастуха умерли, и наследники В не согласны с существующим неравенством. Они могут привести свое стадо на пастбище 1 в надежде, что наследники А уведут свое стадо на другое пастбище. Но если социальный институт собственности развит в достаточной степени, то эта попытка не удастся, поскольку этот институт предусматривает наказание за неправильное поведение.
Таким образом, право собственности как институт, возникающий в ситуации неравенства:
- решают проблему координации действий людей;
- сохраняют существующее неравенство.
К. Маркс в связи с этим выдвинул довольно сильное утверждение о том, что сам институт государства и вся общественная система и институты, которые ее поддерживают, являются институтами, служащими сохранению неравенства, и все они нацелены на то, чтобы защитить положение и собственность власть имущих. Однако институт частной собственности выполняет не только функцию сохранения неравенства, но и является необходимым условием для взаимовыгодного обмена, поскольку позволяют людям координировать свою производственную деятельность и не тратить ресурсы на перераспределение богатства.
ГЛАВА 2. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ ИГР
2.1. Разнообразие ситуаций и сфер жизни человека, в которых применима теория игр.
В жизни известно немало примеров столкновения противоположных сторон, принимающих форму конфликта с двумя действующими сторонами, преследующими противоположные интересы.
Такие ситуации возникают, например, тогда, когда речь идет о доверии. Соответствие действий контрагента ожиданиям становится особенно важным в тех ситуациях, когда риск принимаемых индивидом решений определен действиями контрагента. Модели теории игр служат лучшей иллюстрацией сказанному: выбор игроком той или иной стратегии зависит от действий другого игрока. Доверие заключается в «ожидании определенных действий окружающих, которые влияют на выбор индивида, когда индивид должен начать действовать до того, как станут известными действия окружающих». Подчеркнем связь сделок на рынке с доверием в деперсонифицированной форме (доверия в качестве нормы, регулирующей отношения между индивидами), так как круг участников сделок не должен быть ограничен лично знакомыми людьми. Убедиться в необходимости существования доверия в деперсонифицированной форме для осуществления простейшей рыночной сделки с использованием предоплаты помогает следующая модель (рис.2).
Рисунок 2
Предположим, что покупателю противостоит множество продавцов и он из своего предыдущего делового опыта знает вероятность обмана (1 - р). Рассчитаем такую величину p, чтобы сделка состоялась, т. е. «делать предоплату» была эволюционно-стабильной стратегией. EU (делать предоплату) = 10р - 5(1 - р) = 15p - 5, EU(не делать предоплату) = 0,15p - -5 > 0, р>1/3. Иначе говоря, при уровне доверия покупателя к продавцам меньше 33,3% сделки с предоплатой при заданных условиях становятся невозможными. Иными словами, р = 1/3 является критическим, минимально необходимым уровнем доверия.
Для обобщения результатов заменим конкретные величины выигрыша (10) и проигрыша (-5) покупателя символами G и L. Тогда при прежней структуре игры сделка состоится при р/1-р> L/G: чем выше величина проигрыша относительно выигрыша, тем выше должен быть уровень доверия между участниками сделки. Джеймс Коулмен следующим образом изобразил зависимость потребности в доверии от условий заключаемой сделки (рис. 3).
Рисунок 3
Расчетные данные о минимально необходимом уровне доверия подтверждаются эмпирически. Так, уровень деперсонифицированного доверия в странах с развитой рыночной экономикой, измеренный с помощью ответа на вопрос: «Исходя из Вашего личного опыта, считаете ли Вы, что окружающим людям можно доверять? », составлял 94% в Дании – 24%, 90% - в ФРГ, 88% - в Великобритании, 84% - во Франции, 72% - на севере Италии и 65% - на юге. Показателен низкий уровень доверия на юге Италии, где традиционно сильна мафия. Не случайно один из исследователей мафии - Д. Гамбетта объясняет ее возникновение критически низким уровнем доверия в южных регионах Италии и, следовательно, потребностью в заменителе доверия, принимающего форму вмешательства «третьей стороны», которой доверяют оба участника сделки.
Еще один яркий пример теории игр - контракты между инвестором и государством на разработку месторождений полезных ископаемых.
Для иллюстрации этого примера возьмем контракт о купле-продаже стульев с учетом того, что наличие в них зашитых сокровищ, находится под вопросом [8, с. 231]. Изображать пример будем с учетом того, что в рамках теории игр внешние по отношению к намерениям сторон контракта факторы учитываются с помощью введения в игру с двумя участниками третьего игрока, «природы» (рис. 4).
Рисунок 4
Как следует из представления игры в развернутой форме, вместо четырех исходов их в игре шесть. И если проблема зависимости выигрыша Остапа от действий машиниста сцены находит свое решение при наличии любого отличного от нуля уровня доверия Остапа, то проблема зависимости выигрыша Остапа от наличия в стульях сокровищ остается неразрешимой, что, впрочем, и подтверждает финал романа.
Информация о работе Теория игр в институциональной экономике