Автор работы: Пользователь скрыл имя, 10 Ноября 2015 в 14:53, реферат
Актуальность выбранной темы состоит в широком спектре применений теории игр на практике (биология, социология, математика, менеджмент и т.д.). Конкретно в экономике - в такие моменты, когда не срабатывают теоретические основы теории выбора в классической экономической теории, заключающиеся, например, в том, что потребитель делает свой выбор рационально, он полностью осведомлен о ситуации на данном рынке и о конкретном данном товаре. Именно поэтому в рамках написания контрольной работы была выбрана следующая тема для исследования: «Теория игр в институциональной экономике».
2.2. Возможные стратегии в повторяющихся играх.
Смешанные стратегии. [8, с.83]
Когда игроки попадают в определенную ситуацию выбора неоднократно, то их взаимодействие существенным образом усложняется. Они могут позволить себе комбинировать стратегии, максимизируя общий выигрыш. Покажем это с помощью модели, описывающей отношения между Центральным банком (ЦБ) и экономическим агентом в связи с проводимой ЦБ кредитно-денежной политикой.
ЦБ ориентируется либо на жесткую кредитно-денежную политику, стремясь поддержать инфляцию на фиксированном уровне (π0), либо на эмиссию и, следовательно, повышение темпов инфляции (π1). В свою очередь, экономический агент действует на основе своих инфляционных ожиданий πе (устанавливает цены на свою продукцию, решает вопросы о приобретении товаров и услуг и т.д.), которые могут либо подтверждаться, либо не подтверждаться в результате проводимой ЦБ политики. В случае если π1 > πе, ЦБ получает прибыль от сеньоража и от инфляционного налога. Если πе = π1, то в проигрыше оказывается и ЦБ из-за сокращения поступлений от сеньоража, и экономические агенты, которые продолжают нести тяжесть инфляционного налога. Если πе = π0, то сохраняется статус-кво и в проигрыше никто не оказывается. Наконец, если πе > π0, то проигрывают только экономические агенты: производители - из-за потери спроса на необоснованно подорожавшую продукцию, потребители - из-за создания неоправданных запасов.
В предложенной модели при однократном взаимодействии у агентов нет доминирующих стратегий, отсутствует и равновесие по Нэшу. При повторяющемся многократно взаимодействии, а именно такое взаимодействие и характерно для реальных ситуаций, оба участника могут использовать и ту, и другую имеющуюся у них в распоряжении стратегии. Позволяет ли игрокам чередование стратегий в определенной последовательности максимизировать свою полезность, т. е. достичь равновесия по Нэшу в смешанных стратегиях: исхода, при котором ни один участник не может увеличить свой выигрыш, изменяя в одностороннем порядке свою стратегию? Предположим, что ЦБ проводит жесткую кредитно-денежную политику с вероятностью Р1 (в P1 % случаев), а с вероятностью (1 - Р1) - инфляционную политику. Тогда при выборе экономическим агентом неинфляционных ожиданий (πe = π0) ЦБ может рассчитывать на получение выигрыша, равного EU(ЦБ) = Р1 0+, 1 (1 - Р1) = 1- -P1. В случае инфляционных ожиданий у экономического агента выигрыш ЦБ составит EU(ЦБ) = Р10 + (1 - Р1)(-2) = 2Р1 - 2. Теперь допустим, что экономический агент имеет неифляционные ожидания с вероятностью Р2 (в Р2 % случаев), а инфляционные ожидания - с вероятностью (1 - Р2). Отсюда ожидаемая полезность ЦБ составит EU(ЦБ) = Р2(1 - Р1) + (1 - Р2)(2Р1-2) = =ЗР2-ЗР1 Р2+2Р1 - 2 (рис. 5).
Рисунок 5
Аналогичные расчеты для экономического агента дадут EU (э.а.) = Р1(Р2- 1) + (1 - Р1)(-Р2-2) = 2Р1Р2 + Р1- Р2-2. Если мы перепишем данные выражения в следующей форме EU(ЦБ) = Pl(2-3P2) + ЗР2-2 и EU(э.a.)= =Р2(2Р1-1) +Р1-2, то нетрудно заметить, что при Р2= 2/3 выигрыш ЦБ не зависит от его собственной политики, а при Р1= 1/2 выигрыш экономического агента не зависит от его ожиданий.
Иными словами, равновесием по Нэшу в смешанных стратегиях будет формирование экономическим агентом в 2/3 случаев неинфляционных ожиданий и проведение ЦБ в половине случаев жесткой кредитно-денежной политики. Найденное равновесие достижимо при условии, что экономические агенты формируют ожидания рациональным образом, а не на основе инфляционных ожиданий в предыдущий период, скорректированных на ошибку прогноза предыдущего периода8. Следовательно, изменения в политике ЦБ влияют на поведение экономических агентов только в той степени, в которой они неожиданны и непредсказуемы. Стратегия ЦБ в 50% случаев проводить жесткую кредитно-денежную политику, а в 50% - мягкую как нельзя лучше соответствует созданию атмосферы непредсказуемости.
Эволюционно-стабильная стратегия.
Эволюционно-стабильная стратегия - такая стратегия, что если ее использует большинство индивидов, то никакая альтернативная стратегия не может ее вытеснить посредством механизма естественного отбора, даже если последняя более эффективна по Парето.
Разновидностью повторяющихся игр являются ситуации, когда индивид многократно попадает в определенную ситуацию выбора, но его контрагент не постоянен, а в каждом периоде индивид взаимодействует с новым визави. Поэтому вероятность выбора контрагентом той или иной стратегии будет зависеть не столько от конфигурации смешанной стратегии, сколько от предпочтений каждого из контрагентов. В частности, предполагается, что из общего числа N потенциальных контрагентов n (n/N%) всегда выбирают стратегию А, а m (m/N%) - стратегию Б. Тем самым создаются предпосылки для достижения нового типа равновесия, эволюционно-стабильных стратегий. Эволюционно-стабильной (ESS - Evolutionary Stable Strategy) становится та стратегия, при которой если все члены определенной популяции используют ее, то никакая альтернативная стратегия не может ее вытеснить посредством механизма естественного отбора. Рассмотрим в качестве примера простейший вариант проблемы координации: разъезд на узкой дороге двух автомобилей. Предполагается, что в данной местности лево- и правосторонний стандарты движения равноправны (или же Правила дорожного движения просто не всегда выполняются). Автомобилю А движутся навстречу несколько автомобилей, с которыми ему нужно разъехаться. Если оба автомобиля принимают влево, въезжая на левую обочину по ходу движения, то они разъезжаются без проблем. То же самое происходит, если оба автомобиля принимают вправо. Когда же один автомобиль принимает вправо, а второй - влево и наоборот, то разъехаться они не смогут (рис.6).
Рисунок 6
Итак, автомобилисту А известен приблизительный процент автомобилистов Б, систематически принимающих влево (Р), и процент автомобилистов Б, принимающих вправо (1 - Р). Условие для того, чтобы стратегия «принять вправо» стала для автомобилиста А эволюционно-стабильной, формулируется следующим образом: EU(вправо) > EU(влево), или 0P+ 1(1 - Р) > 1Р+ 0(1 - Р), откуда Р< 1/2. Таким образом, при превышении доли автомобилистов во встречном потоке, принимающих вправо, уровня 50% эволюционно-стабильной стратегией становится «принять вправо» - сворачивать на правую обочину при каждом разъезде.
В общем виде требования к эволюционно-стабильной стратегии записываются следующим образом. Стратегия I, используемая контрагентами с вероятностью p, является эволюционно-стабильной для игрока тогда и только тогда, когда выполняются следующие условия
(I, p) > EU{J, p), что тождественно pU(I, I) + (l -p)U(I,J)>pU(J,I) + (1 -p)U(J,J)
Из чего следует:
U(I, I)> U(J, I) или(I, I) = U(J, I ) и U(I, J) > U(J, J),
где - U(I, I) выигрыш игрока при выборе стратегии I, если контрагент выбирает стратегию I; U(J, I) - выигрыш игрока при выборе стратегии J, если контрагент выбирает стратегию I, и т. д.
Рисунок 7
Можно представить эти условия и в графической форме. Отложим по вертикальной оси ожидаемую полезность выбора той или иной стратегии, а по горизонтальной - долю индивидов в общей популяции игроков, выбирающих обе стратегии. Тогда мы получим следующий график (значения взяты из модели разъезда двух автомобилей), изображенный на рис. 7.
Из рисунка следует, что и «принять влево», и «принять вправо» имеют равные шансы на то, чтобы стать эволюционно-стабильной стратегией до тех пор, пока ни одна из них не охватила больше половины «популяции» водителей. Если же стратегия перешагивает этот рубеж, то она постепенно, но неизбежно вытеснит другую стратегию и охватит всю популяцию водителей. Дело в том, что, если стратегия перешагивает рубеж 50%, для любого водителя становится выгодным использовать ее в маневрах, что, в свою очередь, еще больше увеличивает привлекательность данной стратегии для остальных водителей. В строгой форме данное утверждение будет выглядеть следующим образом
/dt = G [EU(I, p) - EU(J, p)], G'>0
Главным результатом анализа повторяющихся игр является увеличение числа точек равновесия и решение на этой основе проблем координации, кооперации, совместимости и справедливости. Даже в дилемме заключенных, переход к повторяющемуся взаимодействию позволяет достичь оптимального по Парето результата («отрицать вину»), не выходя за рамки нормы рациональности и запрета на обмен информацией между игроками. Именно в этом смысл «всеобщей теоремы»: любой исход, устраивающий индивида индивидуально, может стать при переходе к структуре повторяющейся игры равновесным. В ситуации дилеммы заключенных равновесным исходом при определенных условиях может стать и простая стратегия «не признавать», и множество смешанных стратегий. В числе смешанных и эволюционных стратегий, отметим следующие: Tit-For-Two-Tats - начинать с отрицания вины и признавать вину, только если в два предшествующих периода кряду контрагент признавал вину; DOWING - стратегия, исходящая из предположения о равновероятном использовании контрагентом стратегий «отрицать вину» и «признавать» в самом начале игры. Далее каждое отрицание вины со стороны контрагента поощряется, а каждое признание - наказывается выбором стратегии «признавать вину» в следующий период; TESTER - начинать с признания вины, и если контрагент тоже признает вину, то в следующем периоде отрицать вину.
ЗАКЛЮЧЕНИЕ
В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.
В условиях альтернативы (выбора) очень часто нелегко принять решение и выбрать ту или иную стратегию. Исследование операций позволяет с помощью использования соответствующих математических методов принять обоснованное решение о целесообразности той или иной стратегии. Теория игр, имеющая в запасе арсенал методов решения матричных игр, позволяет эффективно решать указанные задачи несколькими методами и из их множества выбрать наиболее эффективные, а также упрощать исходные матрицы игр.
В данной работе были проиллюстрированы практическое применение основных стратегий теории игр и сделаны соответствующие выводы, изучены самые используемые и часто применяемые стратегии и основные понятия.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Институциональная экономика Одинцова М.И. Уч. пос. изд. ГУ ВШЭ, 2007.
2.Мак-Кинси Дж. Введение в теорию игр. М.: Гос. изд-во физмат литературы, 1960. – 260с.
3.Институциональная экономика: теория и практика А.В. Виноградова Учебно-методическое пособие. - Нижний Новгород: Нижегородский госуниверситет, 2012.
4.С.Г. Коковин Лекции по теории игр - вводный уровень, 2010.
5.Норт Д. Институты, институциональные изменения и функционирование экономики.- М.: Фонд эконом. книги «Начала» , 2007.
7.К.Л. Самаров. Математика. Учебно-методическое пособие по разделу «Элементы теории игр», ООО «Резольвента»,2009.
8.А.Н. Олейник. Институциональная экономика. Учебное пособие. – М.: ИНФРА-М, 2013.
9. Крушевский А.В. - Теория игр. 1977 г.
Информация о работе Теория игр в институциональной экономике