Автор работы: Пользователь скрыл имя, 07 Сентября 2014 в 13:35, курсовая работа
Цель: выявление основных направлений и содержания работы по формированию пространственных представлений у детей старшего дошкольного возраста.
Задачи:
1. Раскрыть теоретические основы по формированию пространственных представлений у детей старшего дошкольного возраста.
2. Дать характеристику задач в современных образовательных программах по формированию пространственных представлений у детей старшего дошкольного возраста.
ВВЕДЕНИЕ
1. Особенности формирования пространственных представлений у детей старшего дошкольного возраста ………..
2. Характеристика современных образовательных программ по формированию пространственных представлений у детей старшего дошкольного возраста
3. Методика работы с детьми старшего дошкольного возраста по развитию пространственных представлений
ЗАКЛЮЧЕНИЕ
ГЛОССАРИЙ
СПИСОК ЛИТЕРАТУРЫ
Дети должны уметь считать предметы, расположенные по вертикали, кругу, в виде числовых фигур. Необходимо учить детей считать, начиная с любого указанного предмета в любом направлении (справа налево, слева направо, сверху вниз) при этом не пропуская предметы и не пересчитывая их дважды.
В старшей группе продолжается работа над усвоением порядкового счета в пределах десяти. Детей учат различать порядковый и количественный счет. Используя количественный счет, можно ответить на вопрос: "Сколько?" определив, сколько всего предметов. Результат счета остается неизменным независимо от направления счета.
Считая предметы по порядку, необходимо условиться, с какой стороны надо начать счет, так как именно от этого зависит результат счета. Например, если дети пересчитывают десять предметов слева направо, то матрешка будет вторая, а если считать справа налево, то та же самая матрешка будет девятая.
Дети должны научиться правильно отвечать на вопросы: "Сколько?"; "Какой по счету?"; согласовывая при этом числительное с существительным в роде, падеже, числе.
Умение детей различать порядковый и количественный счет закреплять в упражнениях и дидактических играх: "Какой игрушки не стало?", "Кто первый?" и других.
Важной программной задачей, решаемой в старшей группе, является обучение детей измерению. Обучение измерению помогает устранить недостатки в формировании представлений о числе, которые возникают при обучении счету отдельных величин.
Обучать детей измерению с помощью условной мерки начинают в средней группе. Их учат сравнению двух предметов, которые невозможно непосредственно соизмерить (наложить или приложить) и использовать при этом третий предмет – меру. Такое сравнение является частным случаем измерения, так как используемая при этом мерка равна одному из измеряемых предметов.
В старшей группе детей учат измерять с помощью условной меры длину протяжения, объем жидкий и сыпучих тел, переводя количественные отношения в наглядно-представляемые множества.
Прежде всего, детей следует познакомить с правилами измерения протяженных величин, жидких и сыпучих тел. Воспитатель показывает и объясняет правила измерения. Процесс измерения разбивается на этапы, каждый из которых повторяется детьми вслед за воспитателем. Воспитатель сначала демонстрирует мерку, с помощью которой можно измерить полоску бумаги, ленту и пр. Затем показывает, что мерку надо приложить так, чтобы концы измеряемой полоски мерки совпадали. Дети повторяют это действие. Далее воспитатель отмечает конец мерки, объясняет, что каждый раз, когда мерка уложилась полностью, нужно отложить "для памяти" фишку (кружок, квадрат, игрушку), которая показывает, что мерка уложилась в полоске полностью.
Далее мерка прикладывается к отметке, вновь отмечается конец мерки и снова откладывается фишка. Так измеряется вся полоска. В результате измерения перед детьми образуется ряд фишек, пересчитав которые можно сказать, сколько раз мерка уложилась в измеряемом объекте.
Дети должны прочно усвоить правила измерения, так как на последующих занятиях они выполняют измерение самостоятельно от начала до конца. Важно, чтобы дети не только запомнили последовательность измерения, но и четко выполняли правила, понимали смысл каждого действия. Иногда дети допускают небрежность при измерении: неточно совмещают края измеряемого объекта и полоски-мерки; неверно ставят отметку; откладывая мерку последний раз, забывают ставить фишку. Все эти неточности сказываются на результате измерения. Важно, чтобы весь материал, с которым работают дети, был точно выверен, чтобы в измеряемом объекте мерка уложиться полностью число раз.
При измерении сыпучих и жидких тел используются те же правила измерения, а также добавляются новые, характерные для измерения сыпучих и жидких тел. Например, воспитатель показывает миску с крупой и спрашивает: "Сколько здесь крупы, как узнать?". Чаще всего дети предлагают взвесить. "Правильно,- говорит воспитатель,- но у меня нет весов. Как узнать по другому, сколько здесь крупы?" На столе стоят чашка, стакан, ложка, блюдце. Воспитатель указывает на них: "Может эти предметы помогут нам?" Очевидно, дети скажут, что крупу надо измерить ложкой, чашкой. Воспитатель говорит: "Я покажу, как это надо сделать. Давайте попробуем измерить крупу стаканом. Но сначала надо договориться, как мы будем насыпать". Воспитатель показывает, что стакан можно насыпать крупой до половины, полный до краев, "горочкой". Дети могут предложить один из этих вариантов, например, полный до краев. Воспитатель показывает этот стакан с крупой и говорит: "Вот наша мерка – полный до краев стакан. Когда мы будем измерять, надо следить за тем, чтобы стакан всегда был полный до краев, потому что мы так договорились".
Затем воспитатель высыпает крупу из стакана в пустую миску и говорит: "Чтобы не сбиться со счету, что мы должны делать каждый раз, когда высыпаем крупу из стакана?" Дети: "Ставить предметы для памяти".
Воспитатель следит за тем, чтобы дети каждый раз откладывали игрушку после того, как пересыпан полный стакан крупы в миску. Наполняя мерку, воспитатель может специально насыпать крупы полстакана или "горочкой". Она обращает внимание детей на то, что наполняемость стакана должна быть одинаковой, такой, как договорились перед измерением. После того, как вся крупа измерена, воспитатель спрашивает, можно ли узнать, сколько было стаканов крупы в миске. Дети предлагают пересчитать предметы, которые они укладывали для измерения. Пересчитав их, дети выясняют, сколько стаканов содержалось в миске.
На занятиях по измерению для демонстрации лучше всего использовать прозрачную посуду, чтобы дети видели, как в одной миске количество крупы (воды) уменьшается, а в другой – увеличивается.
Чтобы у детей не сформировалось неправильное представление о том, что крупу или жидкость можно измерять только стаканами, воспитатель показывает детям и другие предметы: чашку, блюдце, ложку и предлагает попробовать измерять этими мерками.
Измерение протяженных, сыпучих, жидких тел должно постоянно чередоваться для того, чтобы дети научились подбирать соответствующую меру для измерения разных объектов. Так, например, для измерения протяженных предметов дети подбирают линейку, полоску бумаги, картона, брусок, веревку, карандаш; для измерения жидкостей и сыпучих веществ – все то, во что можно налить или насыпать: стакан, чашку, ложку, блюдце и т.п.
Измерение различных объектов соответствующими мерками позволяет подвести детей к пониманию обобщенного способа измерения с помощью условной мерки.
Организуя измерительную деятельность, детей учат при измерении выделять часть предмета, равную условной мерке, определять, сколько раз мера уложилась в измеряемом объекте, учат сравнивать с помощью меры величину протяженных предметов, объем сыпучих и жидких тел.
Обучение детей измерению происходит параллельно с обучением счету. Измеряя различные объекты и откладывая фишки каждый раз, когда мера уложилась полностью, дети начинают понимать процесс образования числа, воспринимать число, как отношение измеряемого к принятой мерке. Так, чтобы узнать, сколько раз мера уложилась в полоске, дети должны посчитать фишки, которые они откладывали при измерении. Пересчитав фишки, дети могут сказать, сколько раз мерка уложилась в полоске.
Когда дети овладели способом измерения, им предлагается использовать измерение для сравнения двух объектов: какая из дорожек длиннее; в каком кувшине воды больше; в каком мешочке крупы меньше.
Измерение становится более интересным и привлекательным для детей тогда, когда педагог вводит различные игровые ситуации, разнообразный наглядный материал.
На основе измерения решается и такая дидактическая задача, как усвоение детьми количественного состава числа из отдельных единиц (в пределах пяти). Воспитатель предлагает детям измерить ленту с помощью условной меры. Производя измерение, дети откладывают фишки. В итоге измерения, подсчитав фишки, дети могут сказать, сколько раз условная мера уложилась в ленте, определив таким образом длину ленты. Длина ленты предстала перед детьми в виде множества фишек, выраженных определенным числом.
С позиций преемственности математического образования замечу: на сегодня в начальной школе наличествуют два различных подхода к обучению детей математике. Первый (традиционный): сначала вводится понятие "число" (натуральное), затем его приложение к измерению величин. Второй подход: сначала рассматриваются величины, затем учащихся знакомят с операцией измерения величин и, как описание этого процесса, с понятием "число" (как мера величины).Так построен курс математики в программе Д.Б. Эльконина – В.В. Давыдова. Анализируя эти подходы, видный отечественный методист, математик и психолог Л.М. Фридман пишет"Думаю, что второй способ более разумный, ибо число – это модель величины, поэтому, естественно, числа следует изучать уже после изучения величин" Изучение величин следует производить не в обобщенном виде, а как сравнение предметов по протяженности (длине), массе, форме. При этом сначала следует рассматривать непосредственный способ сравнения, когда, к примеру, сравнение двух предметов по длине производится путем их наложения друг на друга, а для сравнения двух предметов по массе используются чашечные весы без гирь и т.д. Затем рассматривается способ сравнения предметов по длине, массе и т.д. с помощью третьего предмета (посредника). Этот третий подход перспективен для построения курса математического развития дошкольников.
В средней группе дети уже знакомились с геометрическими фигурами: квадратом, прямоугольником, треугольником, кругом; объемными телами: шаром, кубом, цилиндром. Далее эти знания будут закрепляться и усугубляться.
В старшей группе дети познакомятся с новой для них фигурой – овалом. Обычно они сами отличают овал от круга. Знакомство с овалом должно происходить на основе обследования фигуры, нахождения разницы между овалом и кругом.
У воспитателя в руках модели овала и круга (высота овала должна равняться диаметру круга). Накладывая круг на фигуру овальной формы, воспитатель демонстрирует детям, что эти фигуры неодинаковые, подчеркивает их разницу. Сообщает название фигуры – овал. Самостоятельно обследуя модели фигур, рассматривая их, накладывая одну на другую, дети должны попытаться сформулировать вывод об их сходстве и различии. "Круг может катиться, ему ничего не мешает, а овал – нет, хотя у него тоже нет углов. У овала одна часть широкая, а другая сужается, как у яйца".
В старшей группе у детей начинают формировать представления о четырехугольнике. Четырехугольник – это обобщенное понятие фигуры, обладающей определенными признаками (четыре угла и четыре стороны). Наиболее ценным для умственного развития ребенка является формирование этого обобщения на основе обследования моделей фигуры, сопоставления с другими фигурами, выделения существенных признаков данной фигуры.
Подводя детей к новому для них пониманию, следует исходить из уже сложившихся представлений. Так, например, занятие, на котором предполагается познакомить детей с четырехугольником, следует начать с анализа уже знакомой фигуры – треугольника. Воспитатель показывает детям треугольник и спрашивает: "Почему он так называется?" Дети, очевидно, будут рассуждать так: "Треугольник называется так потому, что у него три угла". К такому выводу прийти детям нетрудно, так как они знают основные признаки этой фигуры. Затем, указывая на группу предметов с четырьмя углами (квадрат, прямоугольник, трапеция, ромб – названия двух последних фигур детям не даются), воспитатель предлагает детям сказать, чем похожи эти фигуры. Дети указывают на углы и стороны: "У всех этих фигур четыре угла и четыре стороны". Воспитатель просит детей самостоятельно придумать название всем этим фигурам, одобряет их сообразительность и подтверждает, что все эти фигуры называются четырехугольниками. Так детей подводят к выводу, что одно понятие включается в другое, более общее: квадрат, прямоугольник – разновидности четырехугольника.
Детей старшего дошкольного возраста можно подвести к элементарному обобщению знакомых фигур по разным признакам. Для этого каждый ребенок получает конверт с набором геометрических фигур (овалом, треугольниками различной конфигурации, квадратом, прямоугольником и другими четырехугольниками, названия которых дети не знают). Детям дается задание сгруппировать фигуры по признаку величины, независимо от формы; по признаку формы, независимо от величины и цвета; по цвету, независимо от формы и величины; выделить две группы: округлые и угольные фигуры. При выполнении задания дети должны сопровождать свои действия описанием.
Закрепление представлений детей о знакомых им геометрических фигурах и телах рекомендуется осуществлять в различных дидактических играх: "Чудесный мешочек", "На что это похоже?"; в играх: "Домино", "Геометрическое лото"; а также в повседневной жизни.
В старшей группе детей учат видеть геометрическую форму в окружающих предметах: мяч, обруч, тарелка – круг; крышка стола, стена, пол – прямоугольник; платочек – квадрат; косынка – треугольник; стакан – цилиндр.
Определять геометрическую форму в предметах дети могут, рассматривая картинки, окружающие предметы групповой комнаты, оборудование участка.
Усвоение представлений о геометрических фигурах, как правило, не вызывает у детей трудностей. Однако чтобы у ребенка не возникало неверного представления о геометрической фигуре, как фигуре определенного внешнего вида, воспитатель должен предоставить детям возможность действовать с моделями геометрических фигур разной конфигурации (равносторонние, равнобедренные, прямоугольные и др. треугольники; четырехугольники разного вида – квадраты, прямоугольники, ромбы). Это позволит детям научиться осознано выделять основные признаки геометрических фигур.