Автор работы: Пользователь скрыл имя, 06 Ноября 2014 в 17:06, реферат
Гидроочистка – представляет собой процесс химического превращения каких-либо веществ под влиянием на них при высокой температуре и давление водородом. Гидроочистка фракций нефти необходима для уменьшения в товарных нефтепродуктах содержания соединений, которые включают в себя серу. Параллельно этому происходит уменьшение смол и соединений, содержащих кислород, насыщение непредельных углеводородов и гидрокрекинг молекул углеводорода. Гидроочистка – это самый частый процесс переработки нефти и через неё проходят следующие её фракции: бензиновые, керосиновые, фракции масел, а также дизельное топливо и вакуумный газойль.
Пар, кг............................
Электроэнергия, МДж ........................... 79,2
Охлаждающая вода, м3 ………………….8,4
Топливо:
мазут, кг............................
газ (при нормальных условиях), м3 …... 4,2
Катализатор, кг ..............................
Едкий натр, кг............................
Моноэтаноламин, кг ............................ 0,04
Рабочая сила, чел/смена.....................
Принципиальная технологическая схема установки Г–24/1 представлена на рисунке 1.
Исходное сырье – прямогонный бензин из резервуаров сырьевого парка забирается насосом Н–1 (Н–4) и подается в тройник смешения потока, где смешивается с циркулирующим водородсодержащим газом (ВСГ), поступающего с выкида циркуляционных компрессоров В – 1(В–2). Расход сырья в тройник смешения регулируется клапаном, установленном на линии подачи сырья от насоса Н–1 (Н–4) в тройник смешения. При понижении расхода сырья до 2,5 м3/ч закрывается клапан-отсекатель 173-1, установленный на сырьевой линии до тройников смешения. Для предотвращения попадания сырья обратным ходом в линию водородсодержащего газа при аварийных остановках компрессоров, циркулирующий ВСГ входит в тройник смешения через обратный клапан (Рис. 1).
Газосырьевая смесь из тройника смешения поступает в межтрубное пространство теплообменника Т-1/1, где нагревается до температуры 120ч140 °С за счет тепла гидроочищенного топлива, откачиваемого с установки. Из теплообменника Т-1/1 газосырьевая смесь поступает в межтрубное пространство теплообменника Т-2/1, где нагревается до температуры 200-230°С за счет тепла продуктов реакции из реактора Р-1, которые проходят через трубное пространство Т-2/1. Температура нагрева регистрируется.
Окончательный нагрев газосырьевой смеси до температуры реакции 280-4000С осуществляется в трубчатой печи П-1 с горелками беспламенного горения.
Рисунок 1 – Технологическая схема установки Г-24/1
Газосырьевая смесь проходит вначале через конвекционную часть печи (18 труб), затем нагревается в радиантной части (20 труб).
Температура газосырьевой смеси на выходе из печи П-1 регулируется, клапаном установленным на линии подачи топливного газа к форсункам печи. ПАЗ печи предусматривает отсечение подачи топливного газа клапаном – отсекателем.
Нагретая газосырьевая смесь из печи П-1 поступает в верхнюю часть реактора Р-1, заполненного катализатором. В реакторе под давлением 2,5-4,5 МПа и температуре 280ё4000С на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/смІ. Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.
Горячая смесь продуктов реакции и водородсодержащего газа (гидрогенизат) выходит снизу реактора Р-1, проходит через трубное пространство теплообменника Т-2/1, где отдает часть тепла газосырьевой смеси и с температурой не более 300 0С поступает в высокотемпературный сепаратор высокого давления Е-1/1.
Температура ввода гидрогенизата из теплообменника Т-2/1 в сепаратор Е-1/1 регулируется клапаном, который установлен на линии подачи гидрогенизата из реактора Р-1 в сепаратор минуя теплообменник Т-2/1 (на байпасных линиях теплообменников).
В сепараторе Е-1/1 происходит отделение водородсодержащего газа от жидкой фазы (гидрогенизата).
Выделившийся газ из высокотемпературного сепаратора высокого давления Е-1/1 выходит сверху и после охлаждения оборотной водой в межтрубном пространстве холодильника Т-3/1 до температуры не более 50 0С поступает в сепаратор высокого давления Е-2/1, где происходит отделение водородсодержащего газа от жидкой углеводородной фазы, образовавшейся после охлаждения в холодильнике Т-3/1.
Водородсодержащий газ сверху из сепаратора Е-2/1 поступает в низ абсорбера К-3 для очистки раствором моноэтаноламина от сероводорода. После очистки в абсорбере К-3 ВСГ через сепаратор Е-3 поступает на всас компрессора В-1(В-2) и далее в тройник смешения.
Гидрогенизат с низа сепаратора Е-1/1 самотеком поступает в отпарную колонну К-1/1.
Уровень жидкости в сепараторе Е-1/1 регулируется клапаном, который установлен на линии гидрогенизата из Е-1/1 в К-1/1.
Накопившийся в низу сепаратора Е-2/1 конденсат выводится в сепаратор С-3 или на 13 тарелку колонны К-1/1. Уровень жидкости в сепараторе Е-2/1 поддерживается клапаном, который установлен на линии гидрогенизата из Е-2/1.
В отпарной колонне К-1/1 происходит отгон легких углеводородов, растворенных углеводородных газов и сероводорода за счет подачи перегретого водяного пара и снижения давления. В колонне К-1/1 имеются 13 тарелок S-образного типа. Подача сырья предусмотрена на 13, 10 и 7 тарелки.
В низ колонны К – 1/1 подается перегретый водяной пар. Схема получения перегретого водяного пара имеет следующий вид: от паровой гребенки печи П-1 острый водяной пар с давлением до 12 кгс/смІ поступает в змеевики пароперегревателей в печи П-1, где нагревается до температуры 240 0С. Далее перегретый пар через маточник подаётся под нижнюю тарелку колонны К-1/1. Расход перегретого пара в колонны регулируется клапаном, установленном на линии подачи пара в К-1/1.
Отогнанные в отпарной колонне К-1/1 легкие фракции, уходящие вместе с водяным паром сверху колонны с температурой до 180 0С поступают в межтрубное пространство холодильников Т-5/1, Т-5/2, где происходит конденсация и охлаждение. Далее сконденсированный продукт и углеводородный газ с температурой до 50 0С поступают в сепаратор С-3.
С низа отпарной колонны К-1/1 гидроочищенное топливо, содержащее следы воды самотеком поступает в колонну вакуумной сушки К-2/1. Так же возможен вывод продукта помимо колонны К-2/1 напрямую в товарный парк. Уровень в К-1/1 регулируется клапаном, который установлен на перетоке гидрогенизата из К-1/1 в К-2/1.
В колонне К-2/1 происходит испарение воды под вакуумом. Вакуум создается с помощью двухступенчатого эжектора Э-1. На эжектор подается острый пар.
Оборотная вода подается в холодильник эжектора для охлаждения и конденсации паров из К-2/1 и стекает по барометрической трубе, опущенной под слой воды, в ящик барометрической трубы Е-31/1 для обеспечения гидрозатвора.
Готовое гидроочищенное топливо с низа колонны вакуумной осушки К-2/1 поступает на прием насоса Н-5 (Н–8) и прокачивается насосом через трубное пространство теплообменника Т-1/1, где охлаждается, нагревая газосырьевую смесь, проходящую через межтрубное пространство Т-1/1.
После теплообменника Т-1/1 гидроочищенное топливо охлаждается в межтрубном пространстве холодильника Т-8/1 до температуры не более 60 0С.
Далее гидроочищенное дизельное топливо выводится в резервуары товарного парка.
3.1. Режим работы реактора
В реакторе на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/смІ. Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.
Оптимальный режим работы реактора:
Температура сырья на входе в реактор 320–360 °С
Давление на входе в реактор 4,0–4,5 МПа
Кратность циркуляции ВСГ 200–300 нм3/м3
Объемная скорость подачи сырья 2,0–4,0 ч-1
3.2 Характеристика производственной среды. Анализ опасностей и производственных вредностей
Установка Г-24/1 предназначена для гидроочистки масел или дизельного топлива путем деструктивной гидрогенизацией сернистых соединений на алюмокобальтмолибденовом катализаторе в среде водорода. По технологическим условиям (давление до 5.0МПа и температуре до 400°С), жидкая фаза в технологическом оборудовании, в основном, находится в перегретом состоянии, т.к. обращается в объеме аппаратов и трубопроводов при высоких температурах и давлениях, кроме того, в оборудовании присутствуют различные углеводородные газы.
Полная разгерметизация технологического оборудования с перегретой жидкостью сопровождается переходом большой части этой жидкости в парообразное состояние и образованием взрывопожароопасных облаков. Взрывы подобных облаков обладают большой разрушительной силой и сопровождаются серьезными последствиями.
Наиболее тяжелые последствия могут быть в результате аварии при мгновенной разгерметизации оборудования и выброса смеси водородсодержащих паров жидких углеводородов из технологических блоков. Образовавшееся углеводородное парогазовое облако, которое может содержать все количество вещества, находящегося в блоке, способно загореться или взорваться при наличии источника зажигания, в качестве которого, может выступать нагревательная печь.
При разливе жидких углеводородов происходит испарение углеводородов с поверхности разлития. Объем образующегося парогазового облака углеводородов значительно меньше, чем при разгерметизации оборудования с перегретой жидкостью и при наличии инициатора загорания выгорает по поверхности разлития, что может привести к перегреву емкостного оборудования, трубопроводов и металлоконструкций, находящихся в близи очага пожара.
Основными факторами опасности на установке являются:
- горючесть, взрывоопасность и токсичность продуктов, применяемых и получаемых на установке, наличие их в аппарате в большом количестве;
- возможность образования
- наличие электротехнических
- применение в технологическом
процессе нагревательных печей,
где продукт нагревается до
высоких температур и
- наличие насосов и
- наличие нагретых до высоких температур поверхностей
3.3 Мероприятия по обеспечению безопасности производства
Для обеспечения безопасности производства каждый сотрудник проходит инструктаж.
Для обеспечения безаварийной работы установки и достижения минимального уровня взрывопожароопасности процесса предусмотрены следующие мероприятия:
- процесс осуществляется по
непрерывной схеме и в
- все стадии технологического процесса непрерывны и склонны к устойчивому протеканию;
- вся технологическая схема
установки разделена на 6 технологических
блоков (№ 1, 2/1, 2/2, 2/3, 3, 4), которые, в случае
возникновения аварии или
- при соблюдении правил
- для перемещения
- применяемые, обращающиеся и получаемые
вещества не обладают
- не применяются продукты и теплоносители, несовместимые между собой;
- на установке отсутствуют
- контроль и управление
- по параметрам, определяющим
- на аппаратах, где возможно повышение давления до максимально допустимого, установлены предохранительные клапаны;
- предусмотрены система
- на наружной установке, где
расположено оборудование, в котором
обращаются
Согласно ГОСТ 12.1.044-91 на установке предусмотрены следующие средства пожаротушения:
- первичные средства
- стационарная система
- водяная оросительная система колонных аппаратов;
- лафетные стволы на лафетных вышках (4 вышки);
- пожарные краны в помещении компрессорной.