Использование водорода для получения электроэнергии

Автор работы: Пользователь скрыл имя, 19 Июня 2012 в 13:18, реферат

Описание работы

Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других, массово применяемых машин, используют также топливо на основе не возобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране.

Содержание работы

1. Введение 2
2. Топливные элементы 5
3. Типы топливных элементов 8
4. Гидродвигатель внутреннего сгорания 11
5. Свойства водорода 16
6. Производство водорода для ГДВС 18
7. Примеры использования водорода в качестве источника энергии 20
8. Перспективы развития водородной энергетики 22
9. Заключение 26
10. Список использованной литературы 27

Файлы: 1 файл

Водород .doc

— 835.50 Кб (Скачать файл)

           Отметим и отрицательные качества водорода. Это низкие плотность и объемная теплотворная способность, более широкие пределы взрываемости и более высокая температура воспламенения по сравнению с углеводородами.

           Применение концепции безопасной подачи водорода в камеру сгорания ГДВС, описанной ниже, позволит снизить негативное влияние этих недостатков водорода как топлива, которые заметно перекрываются его достоинствами. 
 
 
 

6. Производство водорода для ГДВС.

           Запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Разрыв этих связей позволяет производить водород и затем использовать его как топливо. Разработаны многочисленные процессы по разложению воды на составные элементы.

           При нагревании свыше 2500°С вода разлагается на водород и кислород (прямой термолиз). Столь высокую температуру можно получить, например, с помощью концентраторов солнечной энергии. Проблема здесь состоит в том, чтобы предотвратить рекомбинацию водорода и кислорода.

           В настоящее время в мире большая часть производимого в промышленном масштабе водорода получается в процессе паровой конверсии метана (ПКМ). Полученный таким путем водород используется как реагент для очистки нефти и как компонент азотных удобрений, а также для ракетной техники. Пар и тепловая энергия при температурах 750-850°С требуются, чтобы отделить водород от углеродной основы в метане, что и происходит в химических паровых реформерах на каталитических поверхностях. Первая ступень процесса ПКМ расщепляет метан и водяной пар на водород и моноксид углерода. Вслед за этим на второй ступени "реакция сдвига" превращает моноксид углерода и воду в диоксид углерода и водород. Эта реакция происходит при температурах 200-250°С.

          Начиная с 70-х годов прошлого века в стране, были выполнены и получили необходимое научно-техническое обоснование и экспериментальное подтверждение проекты высокотемпературных гелиевых реакторов (ВТГР) атомных энерготехнологических станций (АЭТС) для химической промышленности и черной металлургии. Среди них АБТУ-50, а позднее - проект атомной энерготехнологической станции с реактором ВГ-400 мощностью 1060 МВт для ядерно-химического комплекса по производству водорода и смесей на его основе, по выпуску аммиака и метанола, а также ряд последующих проектов этого направления.

           Основой для проектов ВТГР послужили разработки ядерных ракетных двигателей на водороде. Созданные в нашей стране для этих целей испытательные высокотемпературные реакторы и демонстрационные ядерные ракетные двигатели продемонстрировали работоспособность при нагреве водорода до рекордной температуры 3000 К.

           Высокотемпературные реакторы с гелиевым теплоносителем - это новый тип экологически чистых универсальных атомных энергоисточников, уникальные свойства которых - способность вырабатывать тепло при температурах более 1000°С и высокий уровень безопасности - определяют широкие возможности их использования для производства в газотурбинном цикле электроэнергии с высоким КПД и для снабжения высокотемпературным теплом и электричеством процессов производства водорода, опреснения воды, технологических процессов химической, нефтеперерабатывающей, металлургической и др. отраслей промышленности. 
 
 
 
 
 
 
 
 
 

     7. Примеры использования водорода, в качестве

       источника энергии.

 

     Автомобиль Toyota FCHV, работающий на водороде, проехал  расстояние в 560 км между Осака и  Токио без последующей дозаправки. Это стало возможным благодаря  новому водородному баку с повышенным давлением. Гибридный автомобиль оборудован также электродвигателем с постоянным магнитом и никель-металлогидридным аккумулятором. Автомобиль сертифицирован для движения по дорогам Японии. Скоро ожидается старт серийного производства модели FCHV.

     В июле 2009 года японские инженеры разработали технологию, которая позволяет увеличить давление в баке с водородом до 70 МПа. Новшество позволяет увеличить расстояние, которое автомобиль может проехать без дозаправки, на 660 км.

     На  улицы города Остин (штат Техас, США) вышел первый автобус, использующий комбинацию аккумуляторов и водородный топливный элемент мощностью 20 кВт. Гибридный автобус разработан компанией Ebus при участии университета штата Техас и института газовых технологий (GTI).

     Автобус способен двигаться без дозаправки около 350 км, что почти в четыре раза превышает ресурс аналогичного автобуса, использующего только аккумуляторы.

     Инфраструктура  для заправки водородом пока не создана, заправка автобуса осуществляется на единственной станции, где водород  вырабатывается, а затем сжимается, хранится и выдается при следующей заправке. Техасские ученые продолжат разработки технологий водородной заправки, а также применения водородных топливных элементов в транспортных средствах.

     Если  верить утверждению крупнейшего  воротилы мобильного бизнеса, компании Nokia, от топливных элементов в качестве аккумуляторов для сотовых телефонов нас отделяет какая-то пара лет. В топливных элементах источником энергии является водород, метанол или этиловый спирт, которые окисляются кислородом при участии платинового катализатора. При этом выделяется достаточное количество экологически чистой энергии. Вопрос перевода мобильных устройств на топливные элементы вместо традиционных литий-ионных аккумуляторов представляет собой проблему поставок и производства, а не технологии. Все необходимые технологии и ноу-хау уже разработаны, в том числе такими копаниями, как производитель ноутбуков Toshiba или автомобильный гигант Toyota.

     По  словам главы исследовательского отдела Nokia Тапани Рианена (Tapani Ryhanen), потребителю необходимо дождаться того времени, когда будет налажена поставка топлива к местам заправки и продажи источников питания для мобильных телефонов. Не стоит забывать и такой аспект использования топливных элементов, как небезопасность некоторых видов энергоносителей. Так, небезызвестный метанол в количестве всего 30 г может привести к смерти, а в меньших дозах – к повреждению нервных тканей и слепоте. Зато топливо в таких элементах окисляется до конца, ничего кроме экологически чистой воды и углекислого газа не остаётся после того, как топливный элемент отработал свой ресурс.

     8. Перспективы развития водородной энергетики.

           Энергетика – основа развития  человеческой цивилизации. В настоящее  время суммарное потребление  энергии в мире составляет около 460 млн. ТДж в годи продолжает расти. Основными видами первичных энергоресурсов являются нефть, природный газ, уголь. В меньшей степени для получения электроэнергии используются также гидроэнергетика и уран. Ресурсы ископаемых энергоносителей, в первую очередь нефти, ограничены. Кроме того, использование углеродных энергоносителей является причиной нарастающего экологического кризиса, в том числе глобальных климатических изменений.

           Отрицательные экологические последствия  использования нефтяных топлив на транспорте в первую очередь заметны в крупных промышленных и культурных центрах. Например, для города с населением примерно 1 млн. человек на долю автотранспорта приходится примерно 70% от суммарного количества (несколько сот тонн в сутки) экологически вредных, в том числе токсичных выбросов, суммарный ущерб от которых составляет в год десятки миллионов долларов, хотя в общем энергетическом балансе города на моторное топливо приходится не более 20 %.

           С водородной энергетикой (экономикой) связаны надежды на глобальное переустройство мировой экономики, к переходу от ископаемых углеводородных энергоносителей к водороду, что открывает возможность использования в качестве неограниченной сырьевой базы водные ресурсы, а продуктами сгорания водорода являются пары воды. В отдаленном будущем для получения электролитического водорода предполагается использовать в основном термоядерную, солнечную и другие возобновляемые источники энергии (ВИЭ).

           Однако в настоящее время широкомасштабное производство водорода из воды ограничивается отсутствием необходимых свободных и дешевых энергетических мощностей. Например, для замены во всех странах моторного топлива водородом потребовалось бы 20 - 30 тыс. млрд. кВт.ч электроэнергии, в то время как мировая выработка ее составляет примерно 15 тыс. млрд. кВт.ч.

Тем не менее для улучшения экологической  обстановки в городе уже в настоящее  время необходимо и можно изыскать энергетические ресурсы для получения  водорода.

           Сюда можно отнести использование избыточных мощностей электрогенерирующих станций в ночные часы и выходные дни, когда спадает потребность в электроэнергии. Например, только на Ленинградской АЭС потенциал неиспользованной электроэнергии составляют порядка 400 млн. кВт.ч, в год ( в целом же по стране - примерно 20 млрд. кВт.ч, что на порядок превышает экономию электроэнергии с переходом на летнее время). Использование указанных мощностей дало бы возможность получать около 5000 т. жидкого электролитического водорода в год и обеспечить водородом около 3900 единиц автотранспорта ( в первую очередь грузового и автобусного ). Водород эффективен и в качестве присадки к моторному топливу. Например, 5 – 8 %вес. водорода на 70 % снижает токсичность выхлопа ДВС и повышает его экономичность. В этом случае количество автотранспорта, использующего то же количество водорода, увеличивается до 12 тыс. единиц. Экономические затраты на создание водородной инфраструктуры окупятся в течение нескольких лет за счет экономии бензина и снижения экологического ущерба.

           Экономически оправданным и целесообразным  являлось бы использование энергетических  резервов, получаемых за счет  снижения удельной энергоемкости  экономики (примерно на 3,5 относительных  % в год). Предварительная оценка  показывает, что вполне реальной представляется задача постепенного перевода автотранспорта на водород, примерно в количестве 12 тыс. единиц к 2012 г. и 20 тыс. - к 2020 г. Для выработки электролитического водорода и его последующего сжижения потребуется около 1млрд. кВт.ч электроэнергии (при существующей технике электролиза и сжижения), что составляет соответственно 0,1 и 0,2% от объема потребляемой в стране в настоящее время электроэнергии. Стоимость капитальных затрат на водородную инфраструктуру (мощностью 12775 т водорода в год) составит примерно 95,7млн. долл.

           При окупаемости в течении  5,5 лет (учитывается стоимость неиспользованного бензина (в ценах 2011 г.) и отсутствие экологического ущерба за счет токсичности выхлопа ДВС ) и - 3,3 года (учитывается отсутствие ущерба окружающей среде, наносимого в целом использованием нефти).

           Развитие водородных технологий  необходимо тесно увязывать с  развитием в целом с ТЭК  страны, экологической ситуацией,  сложившейся в конкретном регионе,  а также с Решением по Киотскому протоколу. Однако отставание в развитие водородных технологий от уровня передовых стран может привести к потере передовых позиций страны в энергетике и экономике.

           Как наиболее реальными и экономически  подтвержденными можно представить следующие основные этапы перехода к водородной экономике.

           1 этап – 2011 г. Замена на автотранспорте нефтяных моторных топлив на природный газ в том числе – на сжиженный (СПГ), инфраструктура которого близка жидководородной.

          2 этап – 2012 г. Наряду с применением в качестве моторного топлива СПГ, использование водорода в качестве добавки (5 – 8% ) к основному моторному топливу в ДВС или в электрохимических генераторах гибридных двигателей.

           3 этап - 2020 г. Получение водорода с частичным использованием ВИЭ (по прогнозу их доля в производстве электроэнергии в мире возрастет до 18 – 20%) и переработанного угля.

           4 этап – 2050 г. Перевод всех видов энергетики и транспорта на водород, производимый преимущественно от ВИЭ (к этому периоду их доля в выработке электроэнергии в мире составит примерно 40%), термоядерной энергии и угля.

           Актуальность скорейшего перехода  к водородным проектам позволила  бы накопить опыт практической  работы по созданию и освоению водородных технологий (производству, накоплению, транспортировки, созданию заправочных станций и др.), разработке необходимых для их безопасной эксплуатации кодов и стандартов, начать подготовку квалифицированных специалистов, повысить уровень доверия городского населения по отношению к водородному топливу. В конечном счете уровень освоения водородных технологий по прогнозам специалистов будет в будущем определять энергетическую и экономическую безопасность страны. 

9. Заключение.

           Энергетика является одной из основных отраслей народного хозяйства, по уровню ее развития и потенциальным возможностям можно судить об экономической мощи страны.

           Нынешнюю энергетическую ситуацию в мире нельзя назвать благополучной из-за того, что запасы ископаемого топлива на планете не бесконечны, цены нестабильны, совершенствование энергетических технологий происходит недостаточно быстро. Анализ современного состояния и использования энергетических ресурсов свидетельствует о том, что высокого уровня потребления энергии достигли лишь промышленно развитые страны. Перед нами встала необходимость развития и внедрения водородных источников энергии. Тем не менее, аргументы сторонников водородной энергетики пока еще не привлекли внимания широкой общественности. Понятно, что по мере роста загрязнения окружающей среды, сопряженного с использованием двигателей внутреннего сгорания, водородные элементы - выбросы которых представляют собой только воду - представляют идеальное решение экологической проблемы. Такие источники можно использовать для питания автомобильных и автобусных двигателей в сильно загрязненной местности. В отличие от аккумуляторов, их можно непрерывно до заправлять самым легким и изобилующим в природе элементом. Развивающиеся страны воспринимают эту технологию как способ уменьшения своей зависимости от колебаний цен на нефть  
и возможности уменьшить эмиссию вредных веществ, особенно в сильно загрязненных густонаселенных регионах. У водородных топливных элементов есть и другое преимущество: их можно внедрить на базе уже имеющейся инфраструктуры. Отсюда следует, что переход к водородным топливным элементам - вполне реальная перспектива.

Информация о работе Использование водорода для получения электроэнергии