Автор работы: Пользователь скрыл имя, 10 Апреля 2013 в 21:57, курсовая работа
В последние годы наряду с изменениями климата происходит значительное увеличение антропогенной нагрузки на природные и урбанизированные экосистемы. В этих условиях важным свойством живых организмов является способность сочетать устойчивость (гомеостаз) и приспособление их строения и функций к изменяющимся условиям среды (адаптация), что дает возможность выжить в условиях нарастающего антропогенного экологического стресса.
Введение 4
Глава 1. Характеристика природно-климатических условий Оренбургской области 5
Глава 2. Состояние и охрана атмосферного воздуха 8
2.1. Критерии санитарно-гигиенической оценки состояния воздуха 8
2.2. Характеристика загрязнения атмосферного воздуха в г.Оренбурге 13
Глава 3.Устойчивость растений к стрессовым факторам 20
3.1. Газоустойчивость растений 25
3.1.1 Адаптация растений к действию газов 26
3.1.2. Группы устойчивости растений 28
3.1.3. Повышение устойчивости растений к загрязняющим газам 28
3.2. Устойчивость растений к тяжелым металлам 30
3.2.1. Влияние тяжелых металлов на физиологические процессы 31
3.2.2. Адаптация растений к тяжелым металлам 33
Заключение 38
Список использованных источников 38
Механизмы устойчивости растений к тяжелым металлам
Клеточная стенка и корневые экссудаты. Связывание тяжелых металлов стенками клеток корня – первый рубеж «обороны» от присутствующих в почвенном растворе металлов. Цель этого механизма – снизить проникновение тяжелых металлов в протопласт. Подобный механизм функционирует, например, у толерантной к тяжелым металлам смолевки обыкновенной, которая аккумулирует их в клеточных стенках эпидермы за счет связывания с белками ли силикатами.
Выделяемая клетками и покрывающая поверхность корня слизь ограничивает проникновение тяжелых металлов в клетки, т.е. выполняет барьерную функцию. Тяжелые металлы связываются с карбоксильными группами уроновых кислот слизи.
Иногда выделяемые в почву эксудаты корней могут содержать гистидин, цитрат и другие хелаторы тяжелых металлов. Подобный механизм используется при детоксикации такого легкого металла, как алюминий. Интересно, что в данном случае у растений, например, гречихи в корнях образуется щавелевая кислота, которая не выбрасывается наружу, а поступает в листья, где алюминий аккумулируется в виде нетоксичного оксалата алюминия.
Плазмалемма играет важную роль в поддержании низкой концентрации тяжелых металлов не только за счет предотвращения или снижения интенсивности их поступления в клетку, но и за счет активного выброса их наружу. В бактериях наиболее эффективной защитой от избытка тяжелых металлов является их активный транспорт из цитоплазмы через плазмалемму. В растениях механизмы транспорта тяжелых металлов в клетку и наружу очень слабо изучены.Белки теплового шока (БТШ) не только выполняют функцию молекулярных шаперонов, но могут участвовать и в защите макромолекул и в репарации поврежденных при стрессе белков. Как уже известно, синтез белков теплового шока вызывается, прежде всего, высокой температурой, но отдельные их компоненты могут синтезироваться и в ответ на действие других стрессоров, в частности тяжелых металлов. Речь идет о группе низкомолекулярных белков (молекулярная масса 16-20 кДа) и высокомолекулярного белка БТШ-70. В культуре клеток томата БТШ-70 синтезируется не только при тепловом шоке, но и под действием кадмия. Этот белок локализован в ядре, цитоплазме и плазмалемме. Было высказано предположение, что БТШ-70 участвует в защите плазмалеммы от повреждения кадмием, так как кратковременная тепловая обработка клеток перед действием кадмия повышала устойчивость мембран к этому металлу.
Фитохелатины и другие хелаторы тяжелых металлов.
Хелаты – вещества, образующие с металлом комплексную соль, в которой металл закреплен по всем валентностям и находится внутри молекулы, поэтому его возможности вступать в реакцию резко снижаются. Хелатирование металлов (образование хелатов) в цитозоле является очень важным механизмом детоксикации тяжелых металлов.
Лигандами (от лат. ligare – связывать), т.е. веществами, образующими с металлом хелат, могут служить аминокислоты, органические кислоты и два класса пептидов: фитохелатины и металлотионеины. Наиболее обстоятельно исследованы в растениях фитохелатины.
Фитохелатины (ФХ) – это пептиды,
которые синтезируются в ответ на обработку
растения тяжелыми металлами, активно
связывают металлы и имеют структуру.
Фитохелатины синтезируютсяне на матрице, а
с помощью фермента фитохелатинсинтазы (
Не все тяжелые металлы
одинаково эффективно индуцируют синтез
фитохелатинов, и не во всех случаях
имеются доказательства их защитного
действия. Еще предстоит выяснить
участие фитохелатинов в
Металлотионеины (МТ) – это низкомолекулярные полипептиды, содержащие большое количество цистеина и активно связывающие металлы. Название этих соединений указывает на присутствие серы в их молекулах (греч. theion – сера). Металлотионеины были исследованы у животных и грибов. Способность растительных металлотионеинов связывать тяжелые металлы и тем самым их обезвреживать еще предстоит доказать.
В отличие от фитохелатинов металлотионеины кодируются генами и синтезируются на рибосомах обычным матричным способом. Обнаружены два класса генов, которые кодируют у арабидопсиса четыре типа металлотионеинов. Проростки арабидопсиса отвечали на присутствие меди интенсивной аккумуляцией мРНК одного из типов металлотиотеинов, но слабо реагировали на кадмий и цинк. Кроме того, установлена способность генов металлотионеинов арабидопсиса повышать устойчивость дрожжевых клеток к меди. У десяти экотипов арабидопсиса обнаружена корреляция между интенсивностью синтеза МТ2 и чувствительностью к меди.
Потенциально органические
кислоты и аминокислоты (
Компартментация тяжелых металлов в вакуолях.
Выброс ионов через плазмалемму наружу или их транспорт в вакуоль – это два пути уменьшения избыточных, токсичных концентраций металлов в цитозоле. Выше уже говорилось, что аккумумуляция комплекса «кадмий-фитохелатин» в вакуоли происходит с помощью АВС-переносчика. Появляются данные, что в вакуоли могут аккумулироваться и другие тяжелые металлы, приносимые в нее с помощью других транспортных систем тонопласта. Было показано, что вакуоль является местом аккумуляции также Мо и Zn. Подобная компартментация Zn важна для выживания, например, растений ячменя. Более того, из растений арабидопсиса был изолирован ген (ТАТ), гомологичный гену переносчика цинка в клетках животных (ZnT). Перенос этого гена в растение и его активная экспрессия приводила к значительному увеличению устойчивости к цинку и аккумуляции этого металла в корнях при высокой концентрации его в среде. Следовательно, переносчик цинка мог участвовать в аккумуляции этого металла в вакуоли и тем самым в устойчивости растений (Кузнецов, 2005).
Таким образом, целый ряд механизмов повышения толерантности растений к тяжелым металлам направлен на удаление избыточного содержания металла из цитоплазмы и тем самым на предотвращение его возможных токсических эффектов. Для развития устойчивости к данному конкретному металлу используется не один, а несколько различных механизмов. Какого-либо единственного механизма, обеспечивающего толерантность растения к нескольким разным тяжелым металлам, не существует. Механизмы восприятия растением сигнала от действия тяжелого металла и трансдукции (передачи) этого сигнала к генам в настоящее время не известны
1. Бондарев В.П., Долгушин Л.Д., Залогин Б.С. и др. Экологическое состояние территории России. Учебное пособие / Под ред. С.А. Ушакова, Я.Г. Каца (2-е изд.). – М.: Изд. центр «Академия», 2005.
2. Константинов В.М., Челидзе Ю.Б. Экологические основы природопользования. Учебное пособие (6-е изд.). – М.: Изд. центр «Академия», 2005.
3. Константинов В.М. Охрана природы. Учебное пособие (2-е изд.). – М.: Изд. центр «Академия», 2000.
4 .Миркин Б.М., Наумова Л.Г. Устойчивое развитие: вводный курс. Учебное пособие для студентов вузов. – М.: Университетская книга; Логос, 2006.
5. Кузнецов, В.В. Физиология растений / В.В. Кузнецов, Г.А. Дмитриева. – М.: Высшая школа, 2005. - 736 с.
6. Якушкина, Н.И. Физиология растений / Н.И. Якушкина, Е.Ю. Бахтенко. – М.: Гуманитар. изд. центр ВЛАДОС, 2005. - 463 с.
7. Курсанов, А.Л. Транспорт ассимилятов в растении /А.Л. Курсанов. – М.: Наука, 1999. - 648 с
8. Красинский Н.П. Методы изучения газоустойчивости
растений // Дымоустойчивость растений и дымоустойчивые
ассортименты. -Горький; Москва,1956.С.14-21.
9. Кулагин Ю.З. Древесные растения и промышленная
среда. М.: Наука, 1974.-156с.
10. Князева Е.И. Газоустойчивость растений
в связи с их систематическим положением и морфолого-
11. Илькун Г.М. Газоустойчивость растений.
Киев: Наук, думка, 19716. -146 с
12. Николаевский B.C. Современное состояние проблемы
газоустойчивости растений // Газоустойчивость растений. Пермь, 1969.- Вып. 3. С.5-27
13. Николаевский B.C. Анатомо-морфологическое
строение листьев древесных растений
в связи с их газоустойчивостью // Вопр.
физиологии и геоботаники.1966.-Вып.4.-С.
14. Физиология
растений: Учебник для студентов вузов.
/ Н.Д. Алехина, Ю.В. Балнокин, В.Ф. Гавриленко
и др.; Под ред. И.П. Ермакова. – М.: Издательский
центр «Академия», 2005. - 640 с.
15. Кретович, В.Л. Биохимия растений /В.Л. Кретович. – М.: Высшая школа, 2000. - 445 с.
16. Веретенников, А.В. Физиология растений; Учебник.-/А.В.Веретенников. –М.: Академический Проект. 2006. – 480
17. Государственный доклад «О состоянии и об охране окружающей среды Оренбургской области» / под ред.К.П.Костюченко. Оренбург, 2012.
18. http://meteoinfo.ru
19. http://mpr.orb.ru/