Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 15:43, контрольная работа
Экология – это наука, исследующая закономерности жизнедеятельности организмов в их естественной среде обитания с учетом изменений, вносимых в среду деятельности человека. Она изучает системы выше уровня организма: популяционные, экологические
Введение 2
1. Важнейшие экологические факторы почвы 3
2. Продуцирование и разложение в природе 5
3. Ноосфера как новая стадия эволюции биосферы. Признаки перехода биосферы в состояние ноосферы 7
4. Локальное загрязнение атмосферы, его экологические последствия. Что такое смог и на какие виды его подразделяют? 9
5. Эффективные методы обеззараживания и очистки питьевой воды. 12
6. Экологическая экспертиза. Оценка воздействия предприятия на окружающую среду (ОВОС). 17
Список использованной литературы 24
Загрязнение атмосферного воздуха воздействует на здоровье человека и на окружающую природную среду различными способами — от прямой и немедленной угрозы (смог и др.) до медленного и постепенного разрушения различных систем жизнеобеспечения организма. Во многих случаях загрязнение воздушной среды нарушает структурные компоненты экосистемы до такой степени, что регуляторные процессы не в состоянии вернуть их в первоначальное состояние и в результате механизм гомеостаза не срабатывает.
Сначала рассмотрим, как влияет на окружающую природную среду локальное (местное) загрязнение атмосферы, а затем глобальное.
Физиологическое воздействие на человеческий организм главных загрязнителей (поллютантов) чревато самыми серьезными последствиями. Так, диоксид серы, соединяясь с влагой, образует серную кислоту, которая разрушает легочную ткань человека и животных. Особенно четко эта связь прослеживается при анализе детской легочной патологии и степени концентрации диоксида серы в атмосфере крупных городов. Согласно исследованиям американских ученых, при уровне загрязнения SO2 до 0,049 мг/м3 показатель заболеваемости (в человека-днях) населения Нэшвилла (США) составлял 8,1%, при 0,150—0,349 мг/м3 — 12 и в районах с загрязнением воздуха выше 0,350 мг/м3 — 43,8%. Особенно опасен диоксид серы, когда он осаждается на пылинках и в этом виде проникает глубоко в дыхательные пути.
Пыль, содержащая диоксид кремния (Si02), вызывает тяжелое заболевание легких — силикоз. Оксиды азота раздражают, а в тяжелых случаях и разъедают слизистые оболочки, например, глаз, легких, участвуют в образовании ядовитых туманов и т. д. Особенно опасны они, если содержатся в загрязненном воздухе совместно с диоксидом серы и другими токсичными соединениями. В этих случаях даже при малых концентрациях загрязняющих веществ возникает эффект синергизма, т. е. усиление токсичности всей газообразной смеси.
Широко известно действие на человеческий организм оксида углерода (угарного газа). При остром отравлении появляются общая слабость, головокружение, тошнота, сонливость, потеря сознания, возможен летальный исход (даже спустя 3—7 дней). Однако из-за низкой концентрации СО в атмосферном воздухе он, как правило, не вызывает массовых отравлений, хотя и очень опасен для лиц, страдающих анемией и сердечно-сосудистыми заболеваниями.
Среди взвешенных твердых частиц наиболее опасны частицы размером менее 5 мкм, которые способны проникать в лимфатические узлы, задерживаться в альвеолах легких, засорять слизистые оболочки.
Весьма неблагоприятные последствия, которые могут сказываться на огромном интервале времени, связаны и с такими незначительными по объему выбросами, как свинец, бензапирен, фосфор, кадмий, мышьяк, кобальт и др. Они угнетают кроветворную систему, вызывают онкологические заболевания, снижают сопротивление организма инфекциям и т. д. Пыль, содержащая соединения свинца и ртути, обладает мутагенными свойствами и вызывает генетические изменения в клетках организма.
Лондонский тип смога возникает зимой в крупных промышленных городах при неблагоприятных погодных условиях (отсутствие ветра и температурная инверсия). Температурная инверсия проявляется в повышении температуры воздуха с высотой в некотором слое атмосферы (обычно в интервале 300— 400 м от поверхности земли) вместо обычного понижения. В результате циркуляция атмосферного воздуха резко нарушается, дым и загрязняющие вещества не могут подняться вверх и не рассеиваются. Нередко возникают туманы. Концентрации оксидов серы, взвешенной пыли, оксида углерода достигают опасных для здоровья человека уровней, приводят к расстройству кровообращения, дыхания, а нередко и к смерти. В 1952 г. в Лондоне от смога с 3 по 9 декабря погибло более 4 тыс. человек, до 10 тыс. человек тяжело заболели. В конце 1962 г. в Руре (ФРГ) смог убил за три дня 156 человек. Рассеять смог может только ветер, а сгладить смогоопасную ситуацию — сокращение выбросов загрязняющих веществ.
Лос-анджелесский тип смога, или фотохимический смог, не менее опасен, чем лондонский. Возникает он летом при интенсивном воздействии солнечной радиации на воздух, насыщенный, а вернее, перенасыщенный выхлопными газами автомобилей. В Лос-Анджелесе, выхлопные газы более четырех миллионов автомобилей выбрасывают только оксидов азота в количестве более чем тысяча тонн в сутки. При очень слабом движении воздуха или безветрии в воздухе в этот период идут сложные реакции с образованием новых высокотоксичных загрязнителей — фотооксидантов (озон, органические перекиси, нитриты и др.), которые раздражают слизистые оболочки желудочно-кишечного тракта, легких и органов зрения. Только в одном городе (Токио) смог вызвал отравление 10 тыс. человек в 1970 г. и 28 тыс. — в 1971 г. По официальным данным, в Афинах в дни смога смертность в шесть раз выше, чем в дни относительно чистой атмосферы. В некоторых наших городах (Кемерово, Ангарск, Новокузнецк, Медногорск и др.), особенно в тех, которые расположены в низинах, в связи с ростом числа автомобилей и увеличением выброса выхлопных газов, содержащих оксид азота, вероятность образования фотохимического смога увеличивается.
Антропогенные выбросы загрязняющих веществ в больших концентрациях и в течение длительного времени наносят большой вред не только человеку, но отрицательно влияют на животных, состояние растений и экосистем в целом.
В экологической литературе описаны случаи массового отравления диких животных, птиц, насекомых при выбросах вредных загрязняющих веществ большой концентрации (особенно залповых). Так, например, установлено, что при оседании на медоносных растениях некоторых токсичных видов пыли наблюдается заметное повышение смертности пчел. Что касается крупных животных, то находящаяся в атмосфере ядовитая пыль поражает их в основном через органы дыхания, а также поступая в организм вместе со съеденными запыленными растениями.
В растения токсичные вещества поступают различными способами. Установлено, что выбросы вредных веществ действуют как непосредственно на зеленые части растений, попадая через устьица в ткани, разрушая хлорофилл и структуру клеток, так и через почву на корневую систему. Так, например, загрязнение почвы пылью токсичных металлов, особенно в соединении с серной кислотой, губительно действует на корневую систему, а через нее и на все растение.
Загрязняющие
газообразные вещества по-разному влияют
на состояние растительности. Одни
лишь слабо повреждают листья, хвоинки,
побеги (окись углерода, этилен и
др.), другие действуют на растения губительно
(диоксид серы, хлор, пары ртути, аммиак,
цианистый водород и др.)
В результате
воздействия высокотоксичных
Способна
ли растительность восстановиться после
снижения воздействия вредных
Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов, вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.
К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором, озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.
При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.
При физических способах необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.
Зараженность воды микроорганизмами контролируют, определяя общее число бактерий в 1 мл воды и количество индикаторных бактерий группы кишечной палочки (БГКП). Основной вид этой группы – E . coli – определяется проще, чем другие бактерии этой группы. БГКП присутствуют в воде, загрязненной фекалиями, и при этом обладают одним из самых высоких коэффициентов сопротивляемости обеззараживанию. Будучи безвредной, E . coli является контрольным микроорганизмом, характеризующим бактериальное загрязнение воды. По СанПиН 2.1.4.1074-01 общее число бактерий должно быть не более 50 при отсутствии в 100 мл колиформных бактерий. Мерой зараженности является так называемый коли-индекс, т. е. содержание E . coli в 1 литре воды.
Однако эта норма не всегда коррелирует с обеззараживанием воды от вирусов . При дозах УФ-излучения и хлора, обеспечивающих одинаковый эффект обеззараживания по коли-индексу, воздействие ультрафиолета на вирусы (вируцидный эффект) значительно сильнее, чем в случае применения хлора. Озонирование же по вируцидной активности практически не уступает УФ-облучению. Реальные практические дозы для достижения высокого вируцидного эффекта: 0,5–0,8 г/л озона при контакте 12 мин; при УФ-облучении – 16–40 мДж/см3.
Наиболее распространенным методом обеззараживания воды был и остается метод хлорирования. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.
Очень важным и ценным качеством метода хлорирования является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.
Взаимодействие хлора с микроорганизмами описано выше.
Одновременно с обеззараживание
Хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.
Предлагается применение
диоксида хлора, который обладает рядом
преимуществ, таких как: более высокое
бактерицидное и дезодорирующее
действие, отсутствие в продуктах
обработки хлорорганических соединений,
улучшение органолептических
Применение для