Методы очистки сточных вод от гальванопроизводства

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 00:15, курсовая работа

Описание работы

Соединения хрома (III), а особенно, хрома (VI) токсичны для человека и животных. Смертельная доза K2Cr2О7 (дихромат калия) для человека составляет 0,2–0,3 гр. Поэтому очистка сточных вод гальванического производства от отходов соединений трех- и шестивалентного хрома является актуальной. Наиболее перспективным и эффективным методом очистки сточных вод гальванического производства является электрофлотационный. преимущества этого метода – относительная простота конструкции установки, высокая надежность и высокая степень очистки.

Файлы: 1 файл

фактически курсовик.doc

— 433.50 Кб (Скачать файл)

3.1 Выбор оборудования и технологической схемы очистки сточных вод

Электрофлотатор может работать, как самостоятельно, так и в комбинации с другим оборудованием, например в качестве промежуточного звена (отстойник – фильтр) между грубой (реагентной) и тонкой очисткой (ультрафильтрация – обратный осмос).


Рис. 7 Схема электрофлотатора: 1 – Камера флокуляции (грубой очистки), 2 – Патрубки для подачи сточной воды, 3 – Патрубки для дренажа (технологического слива), 4 – Патрубок для отвода шлама, 5 – Камера для сбора шлама, 6 – Пеносборное устройство, 7 – Уровень воды в аппарате, 8 – Перегородки, 9 – Электродвигатель, 10 – Патрубок для отвода очищенной воды, 11 – Гидрозатвор, 12 – Камера флотации (тонкой очистки), 13 – Электродные блоки, 14 – Токоподводы. Потоки: I – Сточная вода, II – Очищенная вода, III – Флотошлам

 

Электрофлотатор изготовляется в  форме прямоугольной емкости из полипропилена, состоящей из нескольких камер с расположенными в них электродными блоками. Корпус аппарата оборудован входными и выходными патрубками с фланцами для присоединения к трубопроводам. В верхней части аппарата на раме монтируется автоматизированное пеносборное устройство расположенное выше уровня воды и состоящее из электродвигателя и транспортера с лопатками для сбора образующейся пены (шлама). Пеносборное устройство приводится в движение электродвигателем.


Процесс электрофлотации проходит следующим образом: Сточная вода поступает через патрубки 2 в нижнюю часть камеры флокуляции (грубой очистки) 1, переливается через перегородку 8 в камеру флотации (тонкой очистки) 12 и через отверстие в нижней части поступает в сборник очищенной воды 11, обеспечивающий контроль уровня в установке. После наполнения аппарата жидкостью включают источник питания, и на электроды 13 подается ток. В результате протекания процесса электролиза воды на поверхности электродов идёт выделение газовых пузырьков, которые, поднимаясь вверх, взаимодействуют с дисперсными частицами загрязнений с образованием флотокомплексов «частица-пузырьки газа». Плотность образующихся флотокомплексов меньше плотности воды, что обеспечивает их подъём на поверхность сточной жидкости и образование пенного слоя (флотошлама), состоящего из газовых пузырьков, водных прослоек и дисперсных частиц загрязнений.

Очищенная вода через патрубки 10 вытекает из аппарата. Пенный слой периодически удаляется с поверхности сточной  воды пеносборным устройством в направлении против ее течения в камеру 5 с конусным днищем, располагаемую в торце аппарата со стороны входа в него сточной воды. Удаление шлама происходит через патрубок 4. Выделяющиеся газы удаляются вытяжным зонтом, расположенным над электрофлотатором.

Модуль конструктивно разделен на 2 части продольной перегородкой, разделяющей потоки воды и шлама  в электрофлотаторе. Такая конструкция  позволяет использовать электрофлотатор  для обработки, как двух различных  стоков (при независимом подключении камер), так и одного общего стока (при параллельном подключении камер). Слив жидкости из электрофлотатора осуществляется через дренажные штуцера 3.

Интенсификация процесса флотации осуществляется путем дополнительного  применения реагентов – коагулянтов и флокулянтов.

Рис.8 Технологическая схема очистки сточных вод

 

 

 

3.2 Описание технологической схемы

На Рис. 8 представлена технологическая схема очистки сточных вод гальванического цеха машиностроительного предприятия с последующим сбросом очищенной воды в систему городской канализации, либо возвратом для использования на технические нужды предприятия. Данная система очистки сточных вод рекомендуется для использования при проектировании новых очистных сооружений, либо реконструкции и модернизации действующих станций водоочистки в целях повышения их экономической эффективности и экологической безопасности.

Технологическая схема очистки  сточных вод: Е1, Е2, Е3 – накопительная  ёмкость; Н1, Н2 – насос; Д1, Д2, – ёмкость  приготовления раствора реагента; НД1, НД2, НД3 – дозирующий насос; Р1 – реактор смешения; ЭФ – Электрофлотационный модуль; ИПТ – источник питания электрофлотационного модуля; ФП – фильтр пресс; КФ – кварцевый фильтр; ИФ – ионообменный фильтр.


Система работает следующим  образом: промывные и сточные воды гальванического производства подаются в накопительную емкость Е1. Из емкости Е1 стоки насосом Н1 подается в реактор Р1. В реактор Р1 для предварительной обработки сточных вод дозаторами НД2 и НД3 дозируются реагенты: раствор щелочи и флокулянта. Из реактора Р1 стоки поступают на электрофлотатор ЭФ, в котором по представленному ниже механизму осуществляется извлечение гидроксидов тяжелых металлов, нефтепродуктов и СПАВ. Из накопительной емкости Е2 в емкость Е1 дозатором НД1 дозируются отработанные технологические растворы. Из электрофлотатора очищенная вода поступает в сборную емкость Е3. Осветленная вода из сборной емкости Е3 подается насосом Н2 на механический фильтр КФ, и далее на ионообменные фильтры ИФ, в которых методом ионного обмена происходит извлечение следовых концентраций ионов тяжелых металлов до региональных требований ПДК по сбросам. После очистки вода сбрасывается в канализацию, либо может быть частично возвращена в технологический цикл на повторное использование для технических нужд предприятия (в соответствии с ГОСТ 9.314–90 вода 2-й категории).

Шлам подается для обезвоживания  на фильтр-пресс ФП. Обезвоженный шлам влажностью не более 70% утилизируется.

Основным техническим узлом  системы очистки является электрофлотатор, включающий в себя блок нерастворимых электродов, систему сбора шлама, источник постоянного тока и вытяжной зонт. Работа аппарата основана на электрохимических процессах выделения водорода и кислорода за счет электролиза воды и флотационного эффекта. Установка работает, как в непрерывном, так и в периодическом режимах и обеспечивает извлечение взвешенных веществ, нефтепродуктов, ПАВ, ионов тяжелых металлов Cu2+, Ni2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+, Fe2+, Fe3+ Ca2+, Mg2+ и др. в виде гидроксидов и фосфатов.

 

 

 

 

 

 

 

 

 

 


Заключение

Итак, гальваническое производство является одним из крупнейших потребителей воды, а его сточные воды – одними из самых токсичных и вредных.

Основным видом отходов в  гальваническом производстве являются промывные воды смешанного состава, содержащие несколько видов тяжелых металлов и других примесей. Очистка таких стоков затруднена. При этом не удается выделить металлы из шлама сложного состава, а если и удается, то возникают проблемы с дальнейшим использованием и переработкой отходов. Для решения проблемы снижения количества тяжелых металлов в сточных водах до ПДК необходимо использовать замкнутую систему водоснабжения с электрофлотационной очисткой, то есть промывные воды, подвергшиеся очистке от примесей возвращать в технологический цикл, а извлеченные примеси – на захоронение или переработку.

И действительно, в сравнении с  другими методами очистки промышленных сточных вод преимущества использования  электрофлотационных модулей очевидны:

·           высокая эффективность извлечения дисперсных веществ (гидроксидов и фосфатов тяжелых металлов и кальция, нефтепродуктов, поверхностно-активных и взвешенных веществ);

·           высокая производительность (1моборудования – 4 м3/ч очищаемой воды);

·           отсутствие вторичного загрязнения воды благодаря примению нерастворимых электродов ОРТА;

·           низкие затраты электроэнергии от 0,5 до 1 кВт·ч/м3;

·           отсутствие заменяемых материалов (электродов, фильтров, сорбентов и пр.);

·           простота эксплуатации, автоматический режим работы не требуют ежегодного ремонта и остановок;

·           шлам менее влажный (94–96%), в 3–5 раз легче обезвоживается и может быть использован при изготовлении строительных материалов(Жаростойкие бетоны,цемент) и / или пигментов для красителей

 

 

 

 

 

 

 

 

 

 

 


Список литературы

1.    Волоцков Ф.П. Очистка и использование сточных вод гальванических производств. М.: Химия, 1983.

2.    Бучило Э. Очистка сточных вод травильных и гальванических отделений. М.: Энергия, 1977.

3.    Костюк В.Н. Очистка сточных вод машиностроительных предприятий. Л.: Химия, 1990.

4.    Алферова Л.А. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М.: Стройиздат, 1984.

5.    Яковлев С.В. Очистка производственных сточных вод. М.: Стройиздат, 1979.

6.    Когановский А.М. Очистка и использование сточных вод в промышленном водоснабжении. М.: Химия, 1983.

7.    Классен В.И., Мокроусов В.А. Введение в теорию флотации. М.: Металлургиздат, 1959. 580 с.

8.    Глембоцкий В.А., Классен В.И. Флотация. М.: Недра, 1973. 384 с.

9.    Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды. М.: Химия, 1989. 512 с.

10. Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Водоотводящие системы промышленных предприятий. М.: Стройиздат, 1990. 511 с.

11. Пушкарев В.В., Южанинов А.Г., Мэн С.К. Очистка маслосодержащих вод. М.: Металлургия, 1980. 200 с.

12. Проскуряков В.А., Шмидт Л.И. Очистка сточных вод в химической промышленности. Л.: Химия, 1977. 464 с.

13. Справочник по обогащению  руд. Основные процессы. М.: Недра, 1983.


Информация о работе Методы очистки сточных вод от гальванопроизводства