Методы очистки воды

Автор работы: Пользователь скрыл имя, 09 Июня 2015 в 10:15, реферат

Описание работы

Различают природную, сточную и денатурированную воду. Природная вода - это вода, которая качественно и количественно формируется под влиянием естественных процессов при отсутствии антропогенного воздействия и качественные показатели которой находятся на естественном среднемноголетнем уровне. Сточная вода - это вода, бывшая в бытовом, производственном или сельскохозяйственном употреблении, а также прошедшая через какую-либо загрязненную территорию, в том числе населенного пункта. Природная вода, подвергаемая антропогенному загрязнению, например, путем смешения со сточной водой, называется денатурированной или природно-антропогенной.Для очистки сточных вод используют очистные сооружения трех основных типов: локальные, общие и районные или городские.Очистные сооружения районного или городского типа предназначены в основном для механической, физико-химической и биологической очистки сточных вод. Если на эти очистные сооружения направляют производственные сточные воды, то в них не должно быть примесей, которые могут нарушить нормальный ритм работы канализации и очистных сооружений.С точки зрения водоподготовки, наиболее общие и характерные признаки загрязняющих воду веществ - формы нахождения их в воде.

Содержание работы

ВВЕДЕНИЕ....................................................................................................................... 3
ВОДОПОДГОТОВКА........................................................................................................ 5
СОРБЦИЯ......................................................................................................................... 7
АКТИВНЫЕ УГЛИ В ПРОЦЕССАХ ВОДОПОДГОТОВКИ............................ ... ...... 7
НЕУГЛЕРОДНЫЕ СОРБЕНТЫ В ПРОЦЕССАХ ВОДОПОДГОТОВКИ........... ........ 8
ЭКСТРАКЦИЯ................................ ................................................................................ 9
ЭВАПОРАЦИЯ............................................................................................................... 11
КОАГУЛЯЦИЯ................................................................................................................. 11
ФЛОТАЦИЯ..................................................................................................................... 12
ВАКУУМНАЯ ФЛОТАЦИЯ......................................................... ...................... 13
НАПОРНАЯ ФЛОТАЦИЯ............................................................................ ............ 13
ИМПЕЛЛЕРНАЯ ФЛОТАЦИЯ............................................................................... .. 15
ФЛОТАЦИЯ С ПОДАЧЕЙ ВОЗДУХА ЧЕРЕЗ ПОРИСТЫК МАТЕРИАЛЛЫ............. .. 15
ЭЛЕКТРОФЛОТАЦИЯ.................................................................................................... 16
ИОННЫЙ ОБМЕН...................................................................... .......................... 17
НЕОРГОНИЧЕСКИЕ ИОНИТЫ...................................................................... ........... 20
ОРГОНИЧЕСКИЕ ИОНИТЫ........................................................................... ......... 21
КРИСТАЛИЗАЦИЯ ........................................................................................................ 22
ДИАЛИЗ.......................................................................................................................... 25
СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ...................................................... ........ 26

Файлы: 1 файл

реферат аксу.docx2.docx

— 72.31 Кб (Скачать файл)

К осн. стадиям экстракции жидкостной относятся: 1) приведение в контакт и диспергирование фаз; 2)разделение или расслаивание фаз на экстракт (извлекающая фаза) и рафинат (исчерпываемая фаза); 3)выделение целевых компонентов из экстракта и регенерация экстрагента, для чего наряду с дистилляцией наиб. часто применяют реэкстракцию (процесс, обратный экстракции жидкостной), обрабатывая экстракт водными р-рами в-в, обеспечивающих полный перевод целевых компонентов в р-р или осадок и их концентрирование; 4) промывка экстракта для уменьшения содержания и удаления механически захваченного исходного р-ра.В любом экстракц. процессе после достижения требуемых показателей извлечения фазы должны быть разделены. Эмульсии, образующиеся при перемешивании, обычно термодинамически неустойчивы, что обусловлено наличием избыточной своб. энергии вследствие большой межфазной пов-сти. Последняя уменьшается из-за коалесценции (слияния) капель дисперсной фазы. Коалесценция энергетически выгодна (особенно в бинарных системах) и происходит до тех пор, пока не образуются два слоя жидкости (см. Коалесценция, Тонкие пленки).Разделение эмульсий осуществляется, как правило, в две стадии. Сначала довольно быстро осаждаются (всплывают) и коалесцируют крупные капли. Значительно более мелкие капли остаются в виде "тумана", к-рый отстаивается довольно долго. Скорость расслаивания зачастую определяет производительность аппаратуры всего экстракц. процесса. На практике для интенсификации разделения фаз используют центробежные силы и применяют разл. устройства или насадки, к-рые располагают в отстойниках. В ряде случаев расслаиванию способствует электрич. поле.Осн. требования к пром. экстрагентам: высокая избирательность; высокая экстракц. емкость по целевому компоненту; низкая р-римость в рафинате; совместимость с разбавителями; легкость регенерации; высокие хим., а в ряде случаев и радиационная стойкость; негорючесть или достаточно высокая т-ра вспышки (более 60 °С); невысокая летучесть и низкая токсичность; доступность и невысокая стоимость.Наиб. распространенные пром. экстрагенты подразделяют на след. классы: 1) нейтральные, извлечение к-рыми осуществляется по разным механизмам в зависимости от кислотности исходного р-ра,- вода, фосфорорг. соед. (гл. обр. трибутилфосфат), нефтяные сульфоксиды, насыщенные спирты, простые и сложные эфиры, альдегиды, кетоны и др.; 2) кислые, к-рые извлекают катионы металлов в орг. фазу из водной,- фосфорорг. к-ты [ди(2-этилгексил) фосфорная к-та], карбоновые и нафтеновые к-ты, сульфокислоты, алкилфенолы, хелатообразующие соед. (гидроксиоксимы, алкилгидроксихинолины,β-дикетоны); 3) основные, с помощью к-рых извлекают анионы металлов из водных р-ров,-первичные, вторичные, третичные амины и их соли, соли четвертичных аммониевых, фосфониевых и арсониевых оснований и др. 

 

Эвапорация.  

 

ЭВАПОРА'ЦИЯ, и, мн. нет, ж. [латин. evaporatio] (науч). Выпаривание, испарение.Эвапорацией называют отгонку водяным паром летучих веществ, которые загрязняют сточную жидкость. Эвапорация производится в периодически действующем аппарате или в непрерывно действующих дистилляционных колонках.Сточная   жидкость   (например,   содержащая   фенол),   нагретая в теплообменнике, поступает в колонну, через которую навстречу движению сточной жидкости пропускают острый пар. Летучие загрязнения сточной жидкости переходят в паровую фазу и распределяются между двумя фазами (паром и водой) в соответствии с уравнением СП/СВ = g, где СП и СВ — концентрации примеси в паре и сточной воде, кг/м3;  g— коэффициент распределения. Для аммиака, этиламина, диэтиламина, анилина и фенола, содержащихся в сточной воде, коэффициент распределения соответственно равен 13, 20, 43; 5,5 и 2.Насыщенный загрязнениями пар поступает в поглотительную колонну, где он очищается   от загрязнений.Концентрация примеси в сточной воде на выходе из эвапорационной колонны: 

 

СВ = С0(qg — 1)/( qgex —1), 

 

где  С0 — концентрация примеси в исходной сточной воде, кг/м3; q — удельный расход пара, кг/кг; х = [rsH(qg - 1)]/(bqg), здесь bqg — эмпирическая постоянная насадки; b — плотность орошения колонны водой, м3/м2; r — эмпирическая постоянная, м/с; s — удельная площадь поверхности насадки, м3/м2; Н — высота слоя насадки, м. Если сточную жидкость нужно очистить от фенола, то пар освобождают от него пропусканием через нагретый до 100 раствор щелочи. 

 

    Коагуляция.

КОАГУЛЯЦИЯ (от лат. coagulatio- свертывание, сгущение), объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях. Соударения происходят в результате броуновского движения, а также седиментации, перемещения частиц в электрич. поле (электрокоагуляция), мех. воздействия на систему перемешивания... Наиболее часто в качестве коагулянта используют полигидраты солей алюминия и железа, например, полиалюмогидрохлорид или полиалюмогидросульфат, или полигидрат сульфата железа (II). Последний реагент применяется при совмещении процессов коагуляции и известкования. Процесс осветления коагуляцией – сложное физико-химическое явление, успех которого зависит от массы параметров. Тем не менее, можно выделить четыре основных фактора, которые определяют скорость и качество протекания реакции.

1.      Скорость потока. Поскольку глубина процесса детерминирована временем образования и укрупнения флокул, следует учитывать, что режим потока может  существенно влиять на возникающие первичные рыхлые хлопья. В пределе, они могут даже разрушаться. Поэтому скорость потока воды в зоне реакции и отстаивания не должна превышать 1-1,5 мм/с.

2.      рН среды. В связи с тем, что скорость и глубину гидролиза коагулянта определяет кислотность среды, она должна находиться в заданных для данного реагента параметрах. Например, для сульфата алюминия эмпирическое значение оптимального рН находится в пределах 5,5-7,5. В более кислой (рН≤ 4,5) среде гидролиз реагента не происходит, а в более щелочной (свыше 8) получившийся гидроксид алюминия, благодаря амфотерности металла, диссоциирует, как кислота, в результате чего эффективность процесса падает.

3.      Температура. Подогрев (до 40ºС) и перемешивание очищаемой воды увеличивает скорость процесса и повышает размер флокул.

4.      Дозировка коагулянта. Оптимальная дозировка коагулянта определяется на основе анализа природной воды и может варьировать в достаточно широких пределах, в зависимости от времени года и пр.     

Следует заметить, что последний фактор может иметь решающее значение в стоимости первичной обработки воды, поскольку реагенты для такой обработки достаточно дороги.  Для снижения расходов оптимальным выходом становится внедрение автоматизированных систем первичной обработки. Они позволяют существенно сократить расход химикатов (за счет высокой точности подачи – до 1-1,5% по объему) и оптимизировать процессы первичной очистки. Такие системы сегодня нашли достаточно широкое применение в водозаборах. Например, на Западном водозаборе г. Москвы, откуда вода поступает, в том числе, и на ТЭЦ, вода из реки проходит обработку флокулянтами (полиалюмогидрохлорид) при помощи установок GRUNDFOS POLYDOS, при этом станция также самостоятельно поддерживает оптимальный рН. Система полностью автоматизирована и контролируется, через специальные шкафы управления, из центрального диспетчерского пункта. 

 

     Флотация. 

 

Флотация (франц. flottation, от flotter - плавать), процесс разделения мелких твёрдых частиц (главным образом минералов), основанный на различии их в смачиваемости водой.Известно, что при флотации мелкие частицы уносятся мелкими газовыми пузырьками, крупные-крупными, а эффективность флотации зависит еще и от электрического заряда пузырька.Флотация – способ промышленно очистки воды, основанный на удалении загрязнений с помощью пузырьков воздуха. Всплывая, они захватывают частицы примесей, в том числе масел и нефтепродуктов, и выносят их на поверхность воды, образуя там пленку или пенный слой, который затем снимается специальными пеносборными механизмами. Флотаторы предназначены для доочистки сточных вод от мелких частиц минерального происхождения и нерастворимых нефтепродуктов, которые присутствуют в воде в виде мелких капель. Процесс образования комплекса пузырек-частица происходит в три стадии: сближение пузырька воздуха и частицы в жидкой фазе, контакт пузырька с частицей и прилипание пузырька к частице.Прочность соединения пузырек-частица зависит от размеров пузырька и частицы, физико-химических свойств пузырька, частицы и жидкости, гидродинамических условий и других факторов.Процесс очистки стоков при флотации заключается в следующем. Поток жидкости и поток воздуха (мелких пузырьков) в большинстве случаев движутся в одном направлении. Взвешенные частицы загрязнений находятся во всем объеме сточной воды и при совместном движении с пузырьками воздуха происходит агрегатирование частицы с воздухом. Если пузырьки воздуха значительных размеров, то скорости воздушного пузырька и загрязненной частицы различаются  так сильно, что частицы не могут закрепиться на поверхности воздушного пузырька. Кроме того, большие воздушные пузырьки при быстром движении сильно перемешивают воду, вызывая разъединение уже соединенных воздушных пузырьков и загрязненных частиц. Поэтому для нормальной работы флотатора во флотационную камеру не допускаются пузырьки более определенного размера.  

 

   Вакуумная флотация 

 

Вакуумная флотация основана на понижении давления ниже атмосферного в камере флотатора. При этом происходит выделение воздуха, растворенного в воде. При таком процессе флотации образование пузырьков воздуха происходит в спокойной среде, в результате чего улучшается агрегирование комплексов частица-пузырек и не нарушается их целостность вплоть до достижения ими поверхности жидкости.Создание вакуума в большом закрытом резервуаре представляет большие технические трудности из-за необходимости большой герметизации системы и усиления конструкции установки. 

 

Напорная флотация 

 

Этот вид очистки сточных вод выполняется в две стадии: насыщение воды воздухом под давлением; выделение пузырьков воздуха соответствующего диаметра и всплытие взвешенных и эмульгированных частиц примесей вместе с пузырьками воздуха. Если флотация проводится без добавления реагентов, то такая флотация относится к физическим способам очистки сточных вод. Если флотационный процесс идет с добавлением химических реагентов, то такая очистка сточных вод считается физико-химической. Применение химических реагентов улучшает качество очистки воды, но вызывает образование большого количества шлама, нуждающегося в дальнейшей переработке.Современные схемы флотационных установок можно разделить на три основные группы. 

 

 

  Импеллерная флотация 

 

Флотаторы импеллерного типа применяют для очистки сточных вод нефтяных предприятий от нефти, нефтепродуктов и жиров. Их также можно использовать для очистки сточных вод других предприятий. Данный способ очистки в промышленности применяют редко из-за его небольшой эффективности, высокой турбулентности потоков во флотационной камере, приводящей к разрушению хлопьевидных частиц, и необходимости применять поверхностно-активные вещества.Сущность этого процесса заключается в диспергировании воздуха в воде с помощью механической мешалки (импеллера). Импеллер, установленный на дне флотационной камеры, приводится в движение от электродвигателя, который расположен выше уровня воды во флотаторе. При вращении импеллера образуется зона пониженного давления и через центральную трубу на его лопатки попадает воздух. Одновременно через отверстия на лопасти импеллера поступает небольшое количество воды, которая перемешивается с воздухом и выбрасывается через боковые отверстия во флотационную камеру, где пузырьки воздуха прилипают к частицам и флотируют их на поверхность воды.Степень измельчения пузырьков воздуха зависит от окружной скорости импеллера. Для экономичного расходования электроэнергии и полного использования объема камеры флотатора диаметр импеллеров крупных флотационных машин редко превышает 750 мм, что обусловливает установку большого числа флотационных камер. Это в свою очередь усложняет технологическую обвязку и удорожает эксплуатационные расходы. Импеллерные флотаторы целесообразно применять при очистке с высокой концентрацией (выше 2000-3000 мг/л) нерастворенных загрязнений, т.е. когда для флотации требуется высокая степень насыщения воздухом сточной воды (0,1-0,5 объема воздуха на один объем воды).Преимущество таких машин заключается в полной имитации процесса и возможности быстрого получения предварительных данных для расчета флотатора.  

 

   Флотация с подачей воздуха через пористые материалы  

 

Для получения пузырьков воздуха небольших размеров можно использовать пористые материалы, которые должны иметь достаточное расстояние между отверстиями, чтобы не допустить срастания пузырьков воздуха над поверхностью материала. На размер пузырька большое влияние оказывает скорость истечения воздуха из отверстия. Для получения микропузырьков необходима относительно небольшая скорость истечения.Преимущество такой флотации заключается в простоте конструкции установки и уменьшении затрат электроэнергии. Недостатки этого метода - засорение пор, разрушение пористого материала (керамики), а также трудности, связанные с подбором мелкопористых материалов, обеспечивающих постоянство во времени определенного размера пузырьков воздуха.В зависимости от количества сточной жидкости применяют вертикальные и горизонтальные флотаторы. Вертикальные флотаторы небольшой производительности могут быть поточными и противоточными.В противоточном флотаторе сточная жидкость по трубопроводу подается в верхнюю часть флотатора, представляющего собой цилиндр высотой 2-4 м. В нижнюю часть флотатора закачивается воздух. Последний поступает в поддон, а оттуда через отверстия керамических колпачков, которые закреплены на поддоне, во флотационную камеру. Здесь пузырьки воздуха движутся снизу вверх, а сточная вода - сверху вниз и из нижней части флотатора отводится по трубопроводу и регулятор уровня из флотатора. Образовавшаяся во флотаторе пена отводится с помощью желоба и шламоотводящей трубы за пределы флотатора.Для очистки больших количеств сточных вод применяют горизонтальные флотаторы. Воздух во флотационную камеру поступает через мелкопористые фильтросы, уложенные на дне. Сточная вода подается в верхнюю часть флотационной камеры, а отводится из нижней через регулятор уровня. В этом случае пузырьки воздуха движутся вверх вместе с потоком воды. Время пребывания воды во флотаторе определяется из условия максимального отделения загрязнений из сточной воды и возможности всплытия пены на ее поверхности.Габариты флотаторов зависят от их производительности, размера воздушных отверстий, давления воздуха под фильтросами, уровня воды и др. 

 

Электрофлотация  

 

В настояще время на станциях очистки широко используют электрофлотацию, так как протекающие при этом электрохимические процессы обеспечивают дополнительное обеззараживание сточных вод. Кроме того, применение для электрофлотации алюминиевых или стальных электродов обусловливает переход ионов алюминия или железа в раствор, что способствует коагулированию мельчайших частиц механических примесей сточной воды.Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков, в других - ими надо управлять, чтобы получить максимальный эффект очистки.При прохождении воды через межэлектродное пространство протекают такие процессы, как электролиз, поляризация частиц, электрофорез, окислительно-восстановительные реакции, а также реакции между отдельными продуктами электролиза. Интенсивность происходящих процессов зависит от химического состава сточной воды, материала электродов, которые могут быть растворимыми и нерастворимыми, и от параметров электрического тока (напряжение и плотность).Образование дисперсной газовой фазы в процессе электрофлотации происходит вследствие электролиза воды. Основной составляющей электролизных газов является водород; при этом выделяется незначительное количество кислорода, хлора, оксидов углерода и азота.

Информация о работе Методы очистки воды