Очистка сточных вод

Автор работы: Пользователь скрыл имя, 18 Мая 2014 в 14:23, курсовая работа

Описание работы

Сточные воды коксохимического производства - одни из наиболее опасных (как источник загрязнения водоемов) и трудных с точки зрения их очистки среди промышленных сточных вод. Поэтому проблема очистки сточных вод коксохимического производства решается комплексом физико-химических, механических и биохимических способов, которые используются для очистки локальных стоков и общего фенольного стока на биохимических установках. Выбор способов и эффективность очистки во многом определяются тем, как используются очищенные сточные воды. На большинстве действующих коксохимических предприятий очищенные сточные воды используются для тушения кокса.

Файлы: 1 файл

очистка сточных вод на коксохиме.docx

— 918.03 Кб (Скачать файл)

Для проектирования биохимических установок коксохимических предприятий обычно принимается следующий состав сточных вод, поступающих в аэротенки (в мг/л): фенолы 400, роданиды 400, цианиды 20, общие масла 35, аммиак летучий до 250, аммиак общий 500, ХПК 3000. Состав очищенной воды по основным загрязнениям при проектировании современных биохимических установок (в мг/л): фенолы 0.5 - 2; роданиды 1-3; цианиды до 5, общие масла 10-20, ХПК 300-500. Общая загрязненность сточных вод до и после очистки достаточно полно характеризуется аналитически определяемой величиной ХПК (химической потребности в кислороде для окисления). Для биохимического окисления веществ обобщающим показателем обычно является величина БПК (биологической потребности в кислороде), которая определяется экспериментально при биохимическом окислении веществ в течение 5-ти суток - БПК5, 20-ти суток — БПК20 или БПКполн.). В фенольных стоках коксохимического производства большая часть загрязнений биохимически трудно окисляется, поэтому для этих вод более показательна величина ХПК. Определенное представление о некоторых веществах в сточных водах коксохим производства дают литературные данные об удельных значениях ХПК отдельных веществ (в мг О/мг вещества), а также о соотношении БПК и ХПК - чем оно ниже, тем более легко происходит биохимическое окисление вещества.

 

 

 

 

 

Таблица 4. ХПК и соотношении БПК и ХПК в сточных водах коксохимического производства

 

ХПК

мг О/мг вещества

БПК/ХПК

%

фенол

2.38

46.2

о-, м-, п- крезолы

2.52

62

пирокатехин

1.89

77.8

резорцин

1.89

79.4

гидрохинон

1.89

40

бензол

3.07

37.4

толуол

1.87

58.8

ксилол

3.17

30.9

пиридин

2.43

60.5

хинолин

1.97

71.2

индол

3.07

91

роданиды

1.55

не опр.

цианиды

0.59

 

формальдегид

1.07

67.3

коксохимические общие масла

4.1

 

 

Оптимальная доза активного ила рекомендуется 3 г/л (при 2-х часовом времени отстаивания очищенной воды во вторичном отстойнике).

Повышая дозу активного ила в аэротенках, следует иметь в виду, что при высокой концентрации биомассы (в практике можно поддерживать 5-6 г/л) не сохраняется прямая пропорция между концентрацией ила и скоростью окисления загрязнений. Скорость биохимического окисления уменьшается при повышении начальной дозы ила из-за ухудшения питания отдельных клеток. Сточные воды различных предприятий могут сильно различаться по содержанию отдельных загрязнений, следовательно, необходимо экспериментально определять оптимальную концентрацию активного ила для каждой биохимической установки.

При двухступенчатой очистке сточных вод на первой ступени (обесфеноливании) активный ил (точнее - биомасса) обычно мелкодисперсный, плохо отстаивающийся, поэтому для поддержания необходимой концентрации биомассы в аэротенке в них осуществляется возврат очищенной воды (до 50% и более) из сборника обесфеноленных вод.

На второй ступени очистки (обезроданивании) образуются хорошо оседающие хлопья активного ила (за счет обогащения биомассы простейшими микроорганизмами, которые являются индикатором достаточно глубокой очистки). Возврат сгущенного активного ила из вторичных отстойников технически должен быть организован таким образом, чтобы не разрушать хлопья активного ила (поэтому предпочтительно возврат производить с помощью эрлифтного, а не центробежного насоса). Целесообразно перед подачей возврата ила в аэротенок направлять его через специальную емкость с аэрацией сжатым воздухом (регенератор ила). Повышение концентрации активной биомассы в аэротенках можно осуществлять переоборудованием их в биотенки, то есть заполнением части объема аэротенка неподвижно закрепленным пористым материалом (на котором нарастает и закрепляется биопленка), либо использованием плавающим в объеме аэротенка твердым сорбентом (биосорбционная очистка).

Резкие колебания концентрации поступающих со сточной водой загрязнений приводят к нарушению биохимической очистки. Чтобы компенсировать эти колебания биохимические установки оборудуются усреднителями. Стабилизировать, а также повысить глубину очистки сточных вод позволяет переоборудование усреднителей в предаэротенки: в усреднители подается очищенная сточная вода с активным илом в количестве 10 -20 % от поступающей фенольной воды, и несколько увеличивается количество подаваемого для перемешивания воды в усреднителе сжатого воздуха - до 30м3/м3 поступающей сточной воды. Происходящее в предаэротенке небольшое разбавление исходной воды очищенной водой также благоприятно влияет на дальнейшую биохимическую очистку. Опыт эксплуатации показал, что в предаэротенке окисляется 25-30% поступающих фенолов, существенно уменьшается отрицательное влияние залповых сбросов на жизнедеятельность активного ила в аэротенках.

Эффективность биохимической очистки во многом определяется конструкцией аэрационных систем. На отечественных биохимических установках испытаны различные аэрационные системы: пневматическая, пневмомеханическая, механическая. Выбор аэрационной системы должен основываться на сравнении их эффективности, производительности по кислороду, степени использования кислорода воздуха, а также на оценке эксплуатационных достоинств и недостатков. Кроме того, для обеспечения достаточно полной биохимической очистки аэрационная система должна обеспечивать также хорошее перемешивание сравнительно больших количеств активного ила, а при значительном объеме аэрационных сооружений не вызывать переохлаждения сточной воды (это особенно значимо при окислении роданидов).

Пневматическая аэрация через перфорированные металлические или пластмассовые трубы (среднепузырчатая система аэрации) дает  очень низкий коэффициент использования кислорода воздуха – около 2%; кроме того поддержание активного ила во взвешенном состоянии недостаточно удовлетворительное. Достаточно высокие окислительные способности (то есть количество кислорода, вносимого в единицу времени) и степень использования кислорода воздуха отмечены при применении пневмомеханической системы аэрации. Однако сложность эксплуатации этих систем (связанная, в частности, с тяжелыми условиями работы электродвигателей и редукторов в парах воды и химзагрязнений над аэротенком) была основной причиной того, что они не получили распространения. Кроме того, применение механического поверхностного аэратора вызывает существенное снижение температуры очищаемой воды, что недопустимо в зимнее время, особенно на заводах Украины. Современные биохимические установки на коксохимических заводах - довольно мощные сооружения. С учетом климатических условий, эксплуатационных затрат на обслуживание и ремонт, возможностей управления процессом биохимической очистки наиболее целесообразно сооружать центральную воздуходувную станцию, а в качестве аэрационной системы использовать эрлифтные аэраторы, которые одновременно обеспечивают хорошее перемешивание жидкости в аэротенке. Первые испытания эрлифтной системы аэрации, проведенные в 70-х годах Несмашным на Криворожском коксохимическом заводе, показали безусловные преимущества этой системы аэрации. В последующие годы благодаря систематическим исследованиям и разработкам, проведенным в ВУХИНе (В.Г. Плаксиным, В.М. Кагасовым, А.В. Говорковым, А.В. Путиловым, И.В. Пименовым и др.) была создана оптимальная система эрлифтной аэрации, которая обеспечивает эффективную аэрацию при высоких нагрузках по сточной воде и воздуху, интенсивное перемешивание жидкости и необходимые придонные скорости жидкости в емкостях большого объема. Степень использования кислорода воздуха б зависимости от нагрузки по воздуху на аэратор и уровня жидкости в емкости составляет 10-25%. Основные технические характеристики системы для варианта установки в аэротенке объемом 400 м3 и уровне жидкости 4 м: расход воздуха 2000 (и более) м3/ч, количество аэраторов 45-70, диаметр аэраторов 0,5 – 0,3 м, высота аэратора 1-2 м, приведенная скорость жидкости в аэраторе 1,5 – 2,5 м/с, придонные скорости жидкости более 0.3 м/с, кратность циркуляции не менее 50 l/ч, коэффициент использования кислорода 20-25%, количество вносимого кислорода 120-150 кг/ч, эффективность аэрации 2.35 - 2.95 кг кислорода/квт.ч, перепад давления на газораспределительном устройстве 1000-1500 Па, размеры пузырей не более 6 мм. На большинстве действующих биохимических установок наиболее распространена в настоящее время эрлифтная система аэрации с коэффициентом использования кислорода 12%. Практический опыт работы показал, что высота аэратора должна быть на 0,3м ниже уровня воды в аэротенке, чтобы предотвратить образование волны.

При эксплуатации аэротенков в них наблюдается образование большого количества пены. Причиной образования устойчивых пен является присутствие в сточных водах поверхностно-активных веществ и стабилизаторов пены: тонкодисперсных порошков кокса, пека; жидких полимеров; компонентов каменноугольной смолы, входящих в нерастворимые в толуоле вещества. Стабилизатором пены является также мелкодисперсный активный ил. По мере укрупнения активного ила его стабилизирующее воздействие на пену снижается. Гидравлический способ гашения пены малоэффективен для аэротенков с большой поверхностью, так как трудно обеспечить распределение воды равномерно по всей поверхности, к тому же большое количество воды, подаваемой для гашения пены, нарушает нормальный процесс очистки. Наиболее эффективно использовать аэротенки с перекрытием и подсводовым пространством высотой до 2 м: при этом пенс разрушается поступающей сточной водой и очищенной водой, возвращаемой из вторичного отстойника. Практика показала, что высота слоя пены не превышает 1,5 - 2м. Наличие перекрытия аэротенка позволяет осуществить организованный выброс отработанного воздуха и реализовать мероприятия по очистке его от вредных выбросов в атмосферу. Инженерное оформление схемы биохимической очистки принципиально изменилось за два последних десятилетия: подача воды в аэротенки производится насосами, а не самотеком, это облегчает регулировку гидравлических нагрузок, контроль расходов, позволяет в процессе эксплуатации изменять направление потоков с наименьшими затратами; появились и хорошо зарекомендовали себя металлические аэротенки в надземном исполнении (это, в частности, исключает загрязнение окружающей территории за счет неплотностей сооружений, характерных при сооружении аэротенков из сборного железобетона).

При проектировании биохимических установок приняты следующие основные расчетные зависимости (их необходимо также использовать в процессе эксплуатации при анализе работы установки): Объем аэротенков 1-й и 2-й ступеней (V) определяется на основе окислительной мощности по фенолам и роданидом соответственно(в м3)

                                                    (3)

где: L - количество сточной воды, м3/ч;

С1 и С2 - концентрации окисляемого вещества соответственно до и после очистки, мг/л;

ОМ - окислительная мощность аэротенка (в кг окисляемого вещества на 1 м3 аэротенка в сутки).

Окислительная мощность зависит от исходной концентрации вещества, состава сточных вод, эффективности аэрации и других факторов; определяется экспериментально. Для сточных фенольных вод коксохимических предприятий окислительная мощность по фенолам находится в пределах 0,6-1,2; для роданидов 0,6 – 0,4 (то есть в 2 - 3 раза ниже, чем для фенолов).

Расход воздуха в аэротенки (Qв) рассчитывается по формуле(в нм3/ч):

 

                                     (4)

 

где: L - количество сточной воды, м3 /ч;

ХПК1 и ХПК2 - окисляемость сточной воды соответственно до и после очистки (мг О / л воды);

К1 - коэффициент запаса (обычно принимают 1,2 – 1,25);

0,21 — объемная доля кислорода в воздухе;

0,8 - коэффициент использования растворенного кислорода для окисления загрязнений;

1,429 - плотность кислорода при нормальных условиях (кг/нм3);

ѱ - коэффициент использования кислорода воздуха для данной системы аэрации (%).

 

2 ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ БИОХИМИЧЕСКИХ УСТАНОВОК

 

На отечественных коксохимических предприятиях для очистки сточных вод применяются биохимические установки, имеющие в своем составе отделения предварительной (механической) очистки и биохимической очистки. Отделение предварительной очистки предназначено для извлечения из сточных вод смол и масел отстаиванием и флотацией. Отделение биохимической очистки сточных вод предназначено для биохимического окисления фенолов, роданидов и цианидов. Очистка осуществляется в одну или две стадии. На первой ступени проходит очистка от фенолов и частично от цианидов. На второй - от роданидов и цианидов. Работами ВУХИНа (на Авдеевском коксохимическом заводе в 1967 году) и УХИНа была показан а возможность одноступенчатой биохимической очистки сточных вод от фенолов и роданидов. Однако ВУХИНом одноступенчатая биохимическая очистка не была рекомендована к внедрению из-за невозможности обеспечения ее стабильной работы в реальных условиях действующего коксохимического предприятия – при постоянных значительных колебаниях состава и количества сточных вод, влияние которых существенно различно при биохимических процессах обесфеноливания и обезроданивания. В настоящее время только на отдельных биохимических установках, когда не требуется очистка сточных вод от роданидов, биохимическая очистка осуществляется в одну ступень. Принципиальная технологическая схема современной биохимической установки для очистки сточных вод коксохимического производства приведена в приложении А.

Сточная вода фенольной канализации поступает в сборник 1, откуда насосом 2 подается в преаэратор 3, где ее аэрирует воздухом. Из преаэратора сточная вода поступает в первичные отстойники 4 для очистки от смол. В первичных отстойниках также удаляется часть легких масел, всплывающих на поверхность. Из первичных отстойников сточная вода подается для окончательного обезмасливания на двухступенчатую реагентную флотацию.

Информация о работе Очистка сточных вод