Автор работы: Пользователь скрыл имя, 15 Декабря 2012 в 12:41, реферат
Цель данной работы заключается в рассмотрении основных ныне существующих и перспективных способов утилизации и переработки промышленных отходов. Достижение глобальной цели в процессе выполнения работы достигалось рассмотрением локальных задач. Во-первых, дать понятие промышленных отходов и рассмотреть их классификацию по различным критериям: по их химической природе, технологическим признакам образования, возможности дальнейшей переработке и использования и степени их токсичности. Во-вторых, охарактеризовать способы утилизации, переработки и, при необходимости, условий их захоронения. В-третьих, рассмотреть возможность комплексного использования отходов промышленности как в целом в промышленности, так и на примере металлургического, топливно-энергетического и химического комплексов.
Общая характеристика отходов промышленности…………………………………….1
1.1. Основные понятия отходов…………………………………………………………...….1
1.2. Классификация отходов промышленности....................................................................1
2. Методы хранения отходов промышленности……………………………………………4
2.1. Использование хранилищ промышленных отходов……………………………….....5
2.2. Хранение взрывоопасных отходов………………………………………………………6
2.3. Наземные полигоны……………………………………………………………………….7
3. Термическое обезвреживание токсичных промышленных отходов………………….7
3.1. Жидкофазное окисление…………………………………………………………………..7
3.2. Огневая переработка………………………………………………………………………8
3.3.. Переработка и обезвреживание отходов с применением плазмы…………………..9
4. Разработка малоотходных и безотходных технологий и методов комплексного использования отходов промышленности…………………………………………………11
4.1. Металлургия........................................................................................................................13
4.2. Топливно-энергетический комплекс..............................................................................15
4.3. Химический комплекс.......................................................................................................17
ЗАКЛЮЧЕНИЕ………………………………………………………………………………..19
СПИСОК ЛИТЕРАТУРЫ........................................................................................................20
СПИСОК ОПРЕДЕЛЕНИЙ.....................................................................................................22
Во всех металлургических процессах
образуется значительное количество пыли,
которую необходимо улавливать и
утилизировать с целью
Для этого применимы системы сухого и мокрого пылеулавливания. Основная проблема при улавливании металлургической пыли – повышенное содержание цинка и свинца, которые нарушают процессы пылеулавливания и собственно выплавки.
В США Zn и Pb выделяются путем сбора пыли, содержащей кроме них железо, и последующего дробления так, что более мелкие частицы состоят в основном из соединений цинка и свинца, а более крупные в основном из Fe2O3, что основано на различной хрупкости упомянутых соединений. Кроме этого используется восстановительный обжиг окускованной пыли, возгонка с улавливанием конденсата, магнитная сепарация и флотация. В Германии для данных целей используются растворы серной, азотной или уксусной кислот, которые способны растворить почти весь Zn, но при малых его концентрациях раствориться может и железо. В Японии разделение Fe- и Zn-содержащих отходов обычной магнитной сепарацией. В Бельгии и Люксембурге цинк и свинец из Fe-содержащих отходов выделяются методом флотации и экстракции щелочными растворами.
Кроме оксидов железа, свинца и цинка пыль и шламы содержат оксиды Mn, Mg, Ca, Cr, Ni, Cd и других элементов, которые можно использовать.
Пыли и шламы ферросплавного производства, состоящие главным образом из аморфного диоксида кремния, пригодного для промышленного и жилищного строительства.
Особое место занимают установки улавливания SOX и NOX, т.к. этот процесс весьма затруднителен вследствие низких концентраций данных веществ.
Существует опыт использования
шламов сероочистки после мокрой
известковой обработки для мели
Нефелин – один из компонентов аппатито-нефелиновых руд, являющихся сырьем для химической промышленности, содержит, помимо фосфора, алюминий, натрий, калий, титан, железо, стронций, редкие металлы. Нефелин является альтернативой бокситам, сырью для алюминиевой промышленности и месторождения которых постоянно истощается. Из попутных продуктов, получающихся при переработке нефелиновых руд в глинозем, можно производить и уже производятся содовые продукты и цемент. Существуют два основных способа переработки нефелиновых руд:
Спекательно-щелочной способ. Сущность
метода заключается в
Гидрохимический способ. Данный метод основан на автоклавном разложении нефелина концентрированным раствором едкой щелочи в присутствии извести. В результате образующиеся из алюминатов и силикатов щелочные алюмосиликаты остаются в осадке. Процесс оптимально протекает при 260 – 300° С и 3 МПа. Однако гидрохимический способ переработки нефелиносодержащего сырья требует большое количество щелочи, высокий расход тепла и повышенного водного баланса.
На пути к созданию экологичной и малоотходной металлургии зарубежными государствами был накоплен немалый опыт. В разных странах мира применяются различные методы утилизации и переработки отходов металлургии: в автодорожном и железнодорожном строительстве, в сельском хозяйстве в качестве удобрений, в строительной промышленности и других отраслях.
Несомненное лидерство в этом принадлежит
Японии. При выплавке марганцевых
сплавов образуется большое количество
газов (700 м3/г углеродистого
Ярким примером использования безотходной технологии в нашей стране может служить Пикалевский глиноземный комбинат.
4.2. Топливно-энергетический комплекс
ТЭК – один из крупнейших загрязнителей окружающей среды твердыми, жидкими и пылевидными отходами, т.к. сам процесс производства тепловой или электрической энергии подразумевает сжигание органического топлива с неизбежным образованием токсичных компонентов. Кроме этого с отходами добычи и обогащения топлива теряется большое его количество.
Существует классификация на основе литологического состава отходов добычи и обогащения углей :
· Глинистые (> 50 % глин);
· Песчаные (> 40 % песчаника и кварцита);
· Карбонатные (> 20 % карбонатов).
Кроме этого отходы различаются по физико-химическим и теплофизическим свойствам, по характеристике органического вещества и др.
Породы вскрыши, отличающиеся высоким
содержанием минеральных
Шахтные породы часто содержат большое число микроэлементов, необходимых для питания растений, поэтому могут применяться в качестве удобрений почв, разбалансировка которых происходит в результате интенсификации и химизации сельского хозяйства .
Отходы углеобогащения, содержащие большое количество горючей массы, могут быть подвергнуты дополнительному обогащению с получением кондиционного по зольности твердого топлива или непосредственно использованы для сжигания и газификации. Возможно сжигание высокозольных отходов углеобогащения в пылеватом состоянии на электростанциях, в том числе на крупных, при этом уменьшаются выбросы SOX и NOX в окружающую среду. В некоторых зарубежных странах нашли применение плазменные печи для переплавки легированных отходов и восстановительной плавки. Для этой цели разработаны и используются разнообразные генераторы плазмы и дуговые плазменные горелки разной мощности, где возможно восстановление руд отходами углеобогащения и выработка некоторого количества электроэнергии за счет отходящих газов.
В результате гравитационной сепарации некоторых углей можно определить высокозольные фракции, в которых содержатся ряд микроэлементов (Ag, As, Cd, Mn, Mo, Ni, Pb и другие) в 1.3 – 1.4 раза выше, чем в исходных углях. Бóльшая часть микроэлементов может быть извлечена из продуктов термической обработки или обогащения твердого горючего.
С помощью биологических методов можно извлекать из углей и части угольных отходов пиритную и органическую серу, различные металлы (Mn, Ni, Co, Zn, Ca, Al, Cd) золу, кислород- и азотсодержащие соединения. Очистка угля может осуществляться за 6 суток на 93 % при применении термофильных бактерий и 18 суток мезофильными бактериями.
В связи с грядущим в ближайшие десятилетия истощением запасов угля, нефти, природного газа возникла потребность поиска менее дорогих, но технологически более простых в переработке и использование. Важнейшим, в связи с этим, источником для восполнения энергобаланса, производства чистых энергосистем и многих, остро необходимых стране продуктов становятся горючие сланцы. Из сланцев можно получить: мазут, автомобильный бензин, газ для бытовых нужд, жидкое синтетическое топливо.
4.3. Химический комплекс
Из всех видов минерального сырья особое место занимают агрохимические фосфорсодержащие руды, от которых в значительной мере зависит плодородие почв, а с учетом истощения богатого фосфором сырья важнейшей проблемой является эффективное использование полезных компонентов недр и руды.
Значение фосфора в природе крайне важно. Минеральный фосфор входит в состав костной ткани позвоночных и наружных скелетов ракообразных и моллюсков. Фосфор присутствует в мягких тканях растений и животных. Фосфорсодержащие органические соединения обеспечивает превращение химической энергии в механическую энергию мышечных тканей. Этот элемент входит в состав нуклеиновых кислот, регулирующих наследственность и развитие организмов.
Производство фосфорных
Один из важнейших попутных компонентов апатитовых руд – нефелин.
Еще один минерал, имеющий большое значение и содержащийся в апатитовых рудах, – сфен. В состав данного соединения входит титан (CaTiSiO4(O,OH,F)), а диоксид титана – важный компонент при производстве лакокрасочных изделий. Перспективность сфена как сырья связана с большими запасами этого минерала в нашей стране (главным образом в Хибинах) и, с учетом комплексной переработки апатитовых руд.
В настоящее время существуют различные
технологические системы и
Оптимально сфеновый концентрат разлагается при использовании 50 – 55 %-ой серной кислоты с расходом 1.5 т на 1 т концентрата и протекании процесса в течение 20 – 30 часов и в температурных условиях 130° С. В результате получается 1 т товарного TiO2 на каждые 4 т сфенового концентрата и 6 т серной кислоты.
В нашей стране и за рубежом проводятся работы по получению из горючих сланцев битумов, масляных антисептиков для древесины, ядохимикатов, серы, гипосульфита, бензола, лаков, клеев, дубителей, шлаковой ваты, матов для строительной индустрии, портландцемента и многого другого.
В химической промышленности также используются отходы производства диметилтереоргалата для синтеза алкидных полимеров. Отходы катализаторов производства мономеров используется в строительных лакокрасочных пигментах. Отходы гидроксилсодержащих соединений от производства ксилита идут на изгототовление простых и сложных олигоэфиров – компонентов лакокрасочных материалов, отходы производства меланина – ПАВ-диспергаторов. Катализаторы алкинирования бензола изготавливаются из аллюминесодержащих отходов кабельной промышленности. Отходы производства капролактама – компоненты смазочных материалов или пластифицирующие добавки к бетонным смесям. Из катализаторов нефтепереработки выделяются металлические компоненты: Mo(SO4)3, VO5, тригидрит оксида алюминия, Ni-Mo концентрат и др. Возможно использование кислых гудронов для выработки из воды аммонийных солей, пригодных для использования, как в пресной воде, так и в морской. Кислые гудроны можно применять совместно с нефтяными шлаками в дорожном и коммунальном строительстве.
ЗАКЛЮЧЕНИЕ
Подводя итог всему вышесказанному, можно сказать, что, несмотря на длительность изучения настоящей проблемы, утилизация и переработка отходов промышленности по-прежнему не ведется на должном уровне.
Острота проблемы, несмотря на достаточное количество путей решения, определяется увеличением уровня образования и накопления промышленных отходов. Усилия зарубежных стран направлены, прежде всего, на предупреждение и минимизацию образования отходов, а затем на их рециркуляцию, вторичное использование и разработку эффективных методов окончательной переработки, обезвреживания и окончательного удаления, а захоронения только отходов, не загрязняющих окружающую среду. Все эти мероприятия, бесспорно, уменьшают уровень негативного воздействия отходов промышленности на природу, но не решают проблему прогрессирующего их накопления в окружающей среде и, следовательно, нарастающей опасности проникновения в биосферу вредных веществ под влиянием техногенных и природных процессов. Разнообразие продукции, которая при современном развитии науки и техники может быть безотходно получена и потреблена, весьма ограничено, достижимо лишь на ряде технологических цепей и только высокорентабельными отраслями и производственными объединениями.
Несмотря на длительную ориентацию промышленности нашей страны на ресурсосберегающие технологии, отображало это скорее экономические цели производства, нежели предотвращение вредного воздействия на природу. В СССР на уровне Госснаба была разработана система сбора вторичных ресурсов: макулатуры, текстиля, пиломатериалов, битого стекла, пищевой кости, металлолома и др. – главным образом бытовых отходов.
Ранее считавшееся перспективным способом снижения загрязнения окружающей среды сжигание токсичных бытовых и промышленных отходов, при котором исключение загрязнения окружающей среды высокотоксичными веществами, возможно только на крайне специальных дорогостоящих заводах, не окупающих в результате своей деятельности затраты на строительство и эксплуатацию. Движение к минимизации негативного воздействия промышленных отходов на окружающую среду следует осуществлять по двум магистральным направлениям:
· Технологическое
– повышение экологической
· Экозащитное – стабилизация и изоляция опасных отходов от природной среды.
Информация о работе Проблемы твердых, жидких и газообразных промышленных отходов