Реакция организма на невесомость

Автор работы: Пользователь скрыл имя, 18 Мая 2013 в 19:22, реферат

Описание работы

Первые научно-теоретические разработки вопросов, связанных с оценкой возможного влияния на организм человека отсутствия силы тяжести, были проведены К. Э. Циолковским (1883, 1911, 1919).
В трудах этого выдающегося ученого, признанного «отцом космонавтики», выдвигаются предположения о том, что при невесомости изменится двигательная функция, пространственная ориентировка, могут возникнуть иллюзорные ощущения положения тела, головокружения, приливы крови к голове.

Файлы: 1 файл

Реакции организма на невесомость.docx

— 30.12 Кб (Скачать файл)

Введение

        Первые научно-теоретические разработки вопросов, связанных с оценкой возможного влияния на организм человека отсутствия силы тяжести, были проведены К. Э. Циолковским (1883, 1911, 1919).

        В трудах этого выдающегося ученого, признанного «отцом космонавтики», выдвигаются предположения о том, что при невесомости изменится двигательная функция, пространственная ориентировка, могут возникнуть иллюзорные ощущения положения тела, головокружения, приливы крови к голове. Длительное отсутствие тяжести, по его мнению, может постепенно привести к изменению формы живых организмов, утрате или перестройке некоторых функций и навыков.       Циолковский проводил аналогии между состоянием невесомости и условиями, с которыми человек сталкивается на Земле (погружение в воду, пребывание в постели). Он указывал, в частности, что поскольку постоянное пребывание в постели может быть вредным для здоровых людей, то и в «среде без тяжести» можно ожидать развития аналогичных нарушений. И хотя автор предполагал возможность приспособления человека к этому состоянию, «на всякий случай» он предусматривал необходимость создания искусственной тяжести за счет вращения космического корабля.

       Трудами Циолковского, по существу, были предопределены основные направления экспериментальных исследований влияния невесомости на биологические объекты (изучение сенсорных, двигательных, вегетативных реакций), заложены отправные положения, необходимые для понимания механизмов возникновения тех или иных изменений в условиях невесомости, определен наиболее радикальный путь к предупреждению такого рода расстройств и указаны возможные способы имитации невесомости в наземных условиях.

        После выдающегося орбитального полета Ю. А. Гагарина 12 апреля 1961 года начался период бурного освоения человеком космического пространства. Возможности проведения медицинских и физиологических исследований влияния невесомости на организм человека существенно возросли, однако одновременно повысилось и значение прикладных медицинских задач, связанных с прогнозированием, обеспечением безопасности и эффективности еще более продолжительных перспективных полетов.

        У нас в стране широко развернута экспериментальная работа с лабораторным моделированием невесомости (погружение в воду, пребывание в горизонтальном положении, ограничение подвижности). В такого рода экспериментах изучаются эффекты, обусловленные снижением величины и отсутствием колебаний гидростатического давления крови, уменьшением весовой нагрузки на опорные структуры, состоянием гиподинамии, т. е. теми факторами, значение которых в развитии нарушений, обусловленных влиянием невесомости на организм, по-видимому, является ведущим.

        С помощью иммерсионной модели достаточно оперативно воспроизводятся сдвиги со стороны водно-солевого обмена, ортостатической устойчивости и физической работоспособности. Однако для решения вопроса о влиянии на организм длительной невесомости иммерсионная модель неприемлема. В значительно большей степени этим задачам отвечает состояние гиподинамии в сочетании с горизонтальным положением. Оно в достаточной мере воспроизводит первичные реакции, связанные со многими сторонами действия невесомости, и не содержит сколько-нибудь выраженных побочных эффектов, способных существенно исказить течение основного синдрома. В силу этого названная модель, очевидно, не вносит каких-либо ограничений и в сроки проведения эксперимента, кроме, естественно, тех, которые вытекают из особенностей развития воспроизводимого состояния.

         Таким образом, сложная проблема изучения невесомости как экстремального фактора, реально невоспроизводимого в наземных условиях, основывается на синтезе прямых, т. е. получаемых при космических полетах человека, и косвенных экспериментальных данных. Такого рода синтез представляет собой наиболее плодотворный путь, способный обеспечить прогресс в деле успешного освоения человеком космического пространства.

Механизмы адаптации к невесомости.

        В настоящее время накоплен обширный экспериментальный материал, характеризующий многообразные реакции организма человека на невесомость и ее лабораторные модели. Существует и целый ряд концепций относительно вероятных механизмов формирования этих реакций. Наиболее распространенные из них связывают возникновение всей совокупности изменений со стороны организма с отсутствием весовой нагрузки на костно-мышечную систему, а также с первичным влиянием невесомости на функцию афферентных систем и распределение жидкой среды в организме.

         Переход к состоянию невесомости, по существу, означает функциональную деафферентацию обширных рецепторных полей, которые в наземных условиях реагируют на гравитационные силы и в значительной мере обеспечивают функцию пространственного анализа, пространственной координации движений, а также регуляцию постоянства внутренней среды организма. К числу этих рецепторных полей в первую очередь относятся:

– отолитовая часть вестибулярного аппарата, которая является специфическим гравирецептором и обеспечивает восприятие гравитационной вертикали;

– кожа;

– проприоцептивный аппарат опорно-двигательной системы.

       Значение баро-, механо– и волюморецепторов сосудистого русла и внутренних полостей, заполненных подвижными органами, в создании специфического для действия силы тяжести комплекса ощущений еще недостаточно изучено. Однако нельзя сомневаться в участии этих видов рецепции в общей реакции на невесомость и формировании тех новых взаимоотношений, которые устанавливаются между афферентными системами в этом состоянии.

        Изменения в деятельности афферентных систем состоят в возникновении специфических субъективных ощущений («легкости тела», падения, подъема, переворота, вращения), которые характеризуются различной выраженностью, длительностью и приобретают разнообразную эмоциональную окраску (страх, радость) в зависимости от индивидуальных особенностей, опыта и тренированности испытуемого. Основное содержание этих ощущений состоит в утрате представлений о направлении гравитационной вертикали и пространственном положении тела, в особенности при отсутствии зрительного и тактильного контроля. Хотя зрительный анализатор в безопорном состоянии остается единственным информационным каналом, обеспечивающим пространственную ориентировку, он также может оказаться, особенно в первоначальный период пребывания в невесомости, источником возникновения иллюзорных ощущений пространственного расположения окружающих предметов, что выражается в кажущемся смещении рассматриваемых объектов и «промахивании» при попытках их достижения.

         К объяснению вегетативных проявлений вестибулярного происхождения может быть привлечен также закон Вебера – Фехнера. Поскольку постоянно действующая величина адекватного раздражителя вестибулярного аппарата при переходе к невесомости уменьшается, его чувствительность к ускорениям в этом состоянии в соответствии с законом Вебера – Фехнера должна быть выше, чем в наземных условиях. Действительно, резкие движения головой и туловищем в начале полета вызывали у некоторых космонавтов головокружение и другие сенсорные реакции, которые на Земле обычно проявлялись при более сильном воздействии, например при вращении на кресле Барани. Впрочем, возникновение тошноты и рвоты, характерных для болезни движения, может в состоянии невесомости определяться не только характером вестибулярной афферентации. Существует предположение, что необычное распределение газов и жидкостей в различных областях пищеварительного тракта в невесомости может провоцировать тошноту. В экспериментах на делабиринтированных собаках показано, что возбудимость рвотного центра при действии угловых ускорений может повышаться и за счет интероцептивной афферентации, исходящей от органов брюшной полости. Была также выдвинута гипотеза об участии гемодинамического механизма, связанного с увеличением кровенаполнения черепно-мозговых сосудов, в генезе вестибуловегетативных расстройств.

       Со стороны соматического компонента вестибулярной реакции (нистагм) и порогов чувствительности вестибулярного аппарата к неадекватным раздражениям (к постоянному току) в условиях длительной невесомости не было выявлено существенных отличий от данных предполетного периода. Вместе с тем при кратковременной невесомости на самолете нистагм в ответ на вращательную пробу и электростимуляцию подавлялся. На основании этих фактов исследователи рассматривают невесомость как своеобразный «минус-раздражитель» отолитового аппарата. Отсутствие калорического нистагма в невесомости имеет иную причину и связано с тем, что конвекция любых жидкостей, в том числе и эндолимфы, в этом состоянии физически невозможна.

        Полеты на орбитальных станциях, проведенные в последние годы, показали, что по мере адаптации к невесомости нарушения, связанные с действием ускорений, возникающих при перемещении космонавтов в кабине и при исследованиях на вращающемся кресле, полностью исчезают. С другой стороны, появились сообщения о возникновении вестибулярных расстройств после завершения длительных космических полетов, в то время как изменения со стороны пороговой чувствительности отолитового аппарата к линейным ускорениям отсутствовали. Таким образом, продолжение исследований по оценке вестибулярной функции в космическом полете остается актуальной задачей, в особенности применительно к разработке систем искусственной весомости.

        Анализ особенностей процесса реадаптации у космонавтов, а также наблюдения, проведенные при длительной гиподинамии, свидетельствуют об изменениях со стороны общей реактивности, регуляции вегетативных и двигательных функций. Происхождение упомянутых сдвигов трудно связать исключительно с изменениями рецепторного, афферентного звена рефлекторной дуги, но в принципе такая связь возможна.

        Несовершенством обратной афферентации можно объяснить нарушения координации движений в статике и динамике после окончания космических полетов.

        С изменением функционального состояния рецепторов можно связать и некоторые особенности регуляции водного обмена у космонавтов в полете и послеполетном периоде.

       Таким образом, первичное влияние невесомости на функцию афферентных систем приводит к развитию многообразных сенсорных, двигательных, вегетативных и психологических реакций, отдельные из которых способны снизить эффективную роль человека в выполнении космической программы и осложнить течение периода реадаптации. Значение изменений со стороны интероцептивной афферентной системы более подробно будет рассмотрено в связи с описанием других первичных механизмов влияния невесомости на организм.

         Распределение жидкости в системе эластичных резервуаров определяется законами гидростатики.

         Гидростатическое давление, величина которого пропорциональна высоте столба жидкости и ее удельному весу, воздействуя на стенки резервуара, вызывает их растяжение и соответствующее перераспределение объемов жидкости вниз. Такого рода закономерность проявляется и в распределении биологических жидкостей (главным образом, крови) у человека и животных в наземных условиях. Пребывание в вертикальном положении сопровождается относительным депонированием некоторого объема крови в нижней половине тела, снижением венозного возврата к сердцу, систолического выброса и комплексом соответствующих компенсаторных реакций.

        Ходьба, бег, прыжки, изменения положения тела в пространстве меняют величину и направление гравитационных смещений крови у человека, благодаря чему организм находится в состоянии постоянной готовности к включению компенсаторных реакций, связанных с действием гидростатического фактора. Постоянное пребывание в горизонтальном положении уменьшает величину и изменяет направление гидростатических сил, а погружение в воду способствует их нейтрализации. Поскольку вода через мягкие ткани оказывает эквивалентное противодавление на сосудистые стенки, депонирования крови в нижней половине тела даже при вертикальной позе не происходит. В состоянии невесомости действие гидростатического давления снимается полностью.

         Результатом всех этих процессов оказывается перемещение некоторого объема крови из нижней половины тела в верхнюю. Существует мнение, что перераспределение жидкой среды в организме является наиболее важной биологической реакцией на гравитацию. Многие космонавты испытывали в состоянии невесомости ощущение прилива крови к голове. Оно уменьшалось при «закрутке» корабля, если космонавт располагался вдоль радиуса вращения и головой по направлению к его центру. Гиперемия кожных покровов лица, развитие отечности носоглотки и тканей лица в условиях невесомости также могут быть поставлены в связь с перераспределением крови. Электроплетизмографические исследования, проведенные при кратковременной невесомости на самолете, выявили увеличение кровенаполнения сосудов органов грудной клетки. В полете экипажей на орбитальных станциях обнаружено повышение давления в системе яремных вен, а также развитие венозного застоя в бассейне черепно-мозговых сосудов.

       Объективные признаки перераспределения крови регистрируются и в экспериментах с имитацией невесомости. Например, при длительном пребывании на постельном режиме выявлена застойная дилятация сосудов глазного дна.

       Обусловленное потерей плазмы сгущение крови сопровождается возрастанием показателей гематокрита и вязкости, хотя в дальнейшем может происходить и уменьшение массы эритроцитов. В результате соотношение форменных элементов крови и плазмы нормализуется. Снижение общей массы гемоглобина, отмеченное при послеполетном обследовании космонавтов, обусловлено подавлением эритропоэза и, как показали лабораторные исследования с имитацией невесомости, становится более выраженным, по мере того как возрастает перераспределение крови из нижней половины тела в верхнюю. В поздние сроки экспериментального моделирования невесомости намечается тенденция к восстановлению объема циркулирующей крови. Механизм этого процесса неясен, однако его можно связать с развитием вторичного альдостеронизма или с изменением других механизмов регуляции водного обмена.

Информация о работе Реакция организма на невесомость