Ресурсы биосферы

Автор работы: Пользователь скрыл имя, 11 Декабря 2011 в 15:36, реферат

Описание работы

Энергия. Главными источниками биологически используемой энергии для подавляющего большинства живых существ на Земле являются солнечный свет и пища, в органических веществах которой аккумулирована солнечная энергия. Валовой ресурс солнечной энергии практически неисчерпаем. Ее доступность для земных потребителей обусловлена солнечной постоянной и климатом, а также первичной продукцией биосферы.

Файлы: 1 файл

РЕСУРСЫ.docx

— 172.48 Кб (Скачать файл)

      Однако  из нескольких миллионов биологических  видов в поле зрения людей, занятых  изучением или хозяйственным  использованием организмов, попадает едва лишь сотая часть. В то же время  из-за деградации природной среды, загрязнения, разрушения биоценозов биосфера ежегодно теряет 10-15 тысяч биологических видов, преимущественно низших форм.

      Особенно  невосполнима утрата редких эндемических видов растений, насекомых, рыб и  других животных, как это происходит в районах со своеобразной флорой и фауной. Причины те же: хозяйственное  освоение, перепромысел, вырубка лесов, загрязнение. За последние 40 лет из-за полного исчезновения или резкого снижения численности популяций был прекращен промысел 18 ценных видов рыб. По этим же причинам международными соглашениями резко ограничен промысел китов и некоторых ластоногих. За всю историю охоты на животных человеком полностью уничтожены десятки видов крупных млекопитающих и птиц. В их числе мамонт, ирландский олень, тур, квагга, Стеллерова корова, сумчатый волк, птица моа, дронт, бескрылая гагарка, американский странствующий голубь и другие. Почти полностью истреблены и спасены лишь в состоянии крайнего коллапса природных популяций такие виды, как бизон, зубр, американский бобр, белохвостый гну, олень Давида, кулан, сайгак, выхухоль, котик и др. По данным Международного Союза охраны природы, только за четыре последних столетия исчезло 62 вида млекопитающих десяти отрядов.

      Считается, что под угрозой исчезновения сейчас находится более 10 тыс. видов, в основном высших растений, позвоночных животных и некоторых групп насекомых.

      Биоресурсы  России. Россия владеет почти пятой частью мировых запасов леса. Общая площадь земель лесного фонда РФ - 11,6 млн км2, покрытая лесом площадь - 7,9 млн км2. В 1895 году площадь лесов Российской империи оценивалась в 1 миллиард десятин (10,9 млн км2) и в границах нынешней РФ (без лесов Финляндии, Прибалтики, Польши и Белоруссии) занимала 61% территории. Следовательно, за 100 лет Россия потеряла почти четверть своих лесов.

      Вырубка леса производится ежегодно примерно на 2 млн га; еще 1 млн га лесов уничтожается пожарами. Кроме этого происходит усыхание лесов за счет возникновения очагов болезней и повреждения вредителями. Около 10 млн га лесов подвержено воздействию индустриальных загрязнений.

      Восстановление  леса отстает от вырубки и других потерь в соотношении 1: 4. По экспертным оценкам, площадь лесов Российской Федерации ежегодно сокращается на 2 млн га.

      Из-за низкого технологического уровня переработки  древесины промышленностью и  строительством у нас осваивается  только 1/8 часть заготовленного леса. Много круглого леса идет на экспорт. Миллиарды кубометров гниют или сгорают на лесосеках, устилают русла лесосплавных рек и озер. По выработке пиломатериалов, древесных плит, фанеры, картона и бумаги на 1 кубометр заготовленного леса мы отстаем от Канады, Швеции, Финляндии и других стран в 5-7 раз.

      Но  лес - не только источник древесины. С экологической точки зрения, лес - это ресурс фотосинтеза и самоочищения биосферы. Функции леса многообразны. Кроме общеэкологических и ресурсных функций лес имеет огромное климатическое, санитарно-гигиеническое и рекреационное значение. По мнению В.Г.Горшкова (1990), «более 60% территории России представляет собой до сих пор один из оставшихся на Земле уникальных ресурсов, поддерживающих существование на планете развитых стран Европы и Америки».

      Наличие больших пространств, относительно мало затронутых хозяйственной деятельностью, способствует сохранению биоразнообразия бореальной зоны России, насчитывающей около 2800 видов высших растений и до 4000 видов позвоночных животных.

5.5. Энергетические и минеральные ресурсы

      Мировое потребление энергии неуклонно  растет. За период с 1970 по 1990 гг. использование энергии в величинах нефтяного эквивалента возросло с 5 до 8,8 млрд т. По прогнозам Мировой энергетической конференции, спрос на энергию к 2020 г. может увеличиться еще на 75%. Доминирующим источником энергии по-прежнему остается ископаемое топливо (рис.5.5).

      Невозобновимые энергоресурсы. В табл. 5.5 сопоставлены запасы и современное потребление главных видов ископаемого топлива. Разведанные запасы почти на два порядка меньше геологической оценки их суммарного содержания в земной коре. Преобладающая масса содержится в рассеянных месторождениях горючих сланцев, где концентрация углеводородов ниже 3%. Реальные эксплуатационные запасы в 2-3 раза меньше разведанных.

      Доступные запасы нефти и газа примерно на два порядка превышают их современное  годовое извлечение, запасы угля - на три порядка. Другими словами, сравнивая цифры, относящиеся к оценке разведанных запасов наиболее доступных видов топлива (второй столбец цифр), с цифрами их современного потребления (третий столбец), можно назвать максимальное время, на которое этих запасов может хватить. Для подвижной нефти - это 65 лет, для газа - 44 года, для угля - 320 лет. Учитывая, что потребление продолжает расти, реальные значения должны быть заметно меньше. Однако решающее влияние на объем добычи топлива оказывает пока еще не конечность запасов, а растущий спрос и политика цен. Можно смело прогнозировать долговременную тенденцию роста мировых цен на основные виды топлива в XXI веке. 

      Рис. 5.5. Мировое потребление энергии (Медоуз и др., 1992) 

      Месторождения ископаемых топлив расположены неравномерно. По 1 /З потенциальных мировых запасов угля и газа и более 20% нефти находятся в России. Почти 35% нефти и около 17% газа сосредоточено на Среднем Востоке. Большими потенциалами угля, газа и нефти богата Северная Америка. Эти три региона располагают почти 70% разведанных мировых запасов ископаемого топлива.

      Кроме ископаемого топлива в странах  Азии, Африки и Южной Америки продолжается использование довольно большого количества растительного топлива, в основном древесины. Суммарное количество энергии, получаемое за счет ископаемых и современных  биогенных энергоресурсов, составляет около 12,6 млрд т условного топлива в год.

      Весь  потенциал ископаемых топлив, отраженный в итоге первого столбца табл. 5.5, конечно, колоссален по масштабам человеческой энергетики, но его реальная доступность даже в будущем вряд ли превысит доли процента. А по масштабам земного бюджета солнечной энергии этот потенциал не так уж велик: он немного превышает 4-летний приток. Следует, однако, помнить, что земные запасы угля, нефти и газа сложились за несравненно большее время, минимум за 100-150 млн лет. Топливо, на образование которого когда-то уходило несколько тысяч лет, мы сегодня сжигаем за год. 

      Таблица 5.5

      Потенциальные и используемые ресурсы  горючих ископаемых мира* (млрд т условного топлива)

Горючие ископаемые Оценка  количества в недрах Разведанные запасы Потребление (1990 г.)
Твердое топливо 7800 1280 3,96
Нефть подвижная 430 310 4,72
Тяжелая и запечатанная нефть 1240 70 0,27
Доступный природный газ 330 110 2,48
Нетрадиционный  газ 1600 25 0.04
Горючие сланцы 353000 260 0,08
Итого 364400 2055 11,55
 

      По  данным Мировой энергетической конференции (МИРЭК) 1992 г., 1 т у.т. = 29,3 ГДж. Энергетические эквиваленты масс: 1 т угля - 28 ГДж; 1 т нефти - 43 ГДж; 1 т газа (1400 м3) - 52 ГДж. Приблизительно 0,8% данных по запасам и использованию твердого топлива относятся к торфу

      На  втором месте по значению в энергоресурсах техносферы стоит ядерное топливо, главным источником которого является ископаемый уран. Большая часть урана в литосфере сильно рассеяна. По данным Мировой энергетической конференции, общие рудные запасы урана составляют 20,4 млн т, в том числе разведанные - 3,3 млн т. Содержание урана в породах большинства месторождений, имеющих перспективное коммерческое значение, колеблется от 0,001 до 0,03%. Поэтому производится значительное рудное обогащение. Природный уран на 99,3% состоит из изотопа U-238 и содержит только 0,7% изотопа U-235, масса которого обладает способностью к самопроизвольной цепной реакции. Для промышленных целей производят изотопное обогащение урана с доведением содержания U-235 до 3%. Такой уран (в основном в виде 1)0э) используется в большинстве современных реакторов.

      При расходовании 1 кг урана в активной зоне реактора выделяется в зависимости от физических условий до 65 ТДж теплоты. Это соответствует сжиганию 2300 т угля. Если в качестве перспективного ресурса принять разведанные запасы, то общее количество энергии, которое можно получить в реакторах на тепловых нейтронах, составит около 1000 ЭДж. Для реакторов-размножителей на быстрых нейтронах, использующих реакцию деления U-238 и нарабатывающих плутоний, этот потенциал может возрасти до 140000 ЭДж и в 2,5 раза превысит сумму разведанных запасов органических топлив. К сожалению, часть этого ресурса уже переведена

      в оружейный плутоний и вместе с  массами отработанных радионуклидов  превратилась в потенциал колоссального  экологического риска. Общее потребление  урана всеми странами за 50 лет приблизилось к 1,5 млн т. Для этого понадобилось переработать не менее 10 млрд т горной массы.

      В настоящее время в мире работает более 400 реакторов АЭС с суммарной тепловой мощностью около 1200 ГВт. Они потребляют за год около 60 тыс. т урана и вносят 10-процентный вклад в общее техногенное выделение теплоты.

      Возобновимые энергоресурсы. Хотя использование невозобновимых энергоресурсов ископаемых топлив создает самые серьезные экономические и экологические проблемы, человек намного меньше использует возобновимые энергоресурсы. Не потому, что они меньше (они намного больше), а потому, что их колоссальная энергия непостоянна, распределена на больших пространствах, мало концентрирована и плохо поддается контролю. Сознавая мощь стихий, человек предпочитает бензобак, ружье, электропровод или лазерный луч, где энергия сжата, канализована и находится в его полной власти.

      Еще в 1978 г. ООН было введено понятие «новые и возобновляемые источники энергии», включавшее гидроэнергию, солнечную, геотермальную, ветровую, энергию морских волн, приливов и океана, энергию биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников.

      Геофизические ресурсы энергии очень велики. Только близкие к поверхности суши и океана перемещения воздушных и водных масс имеют мощность порядка 25 ПВт, что в 2000 раз больше топливной мощности техносферы. Принципиальное отличие этих ресурсов от топливных заключается в том, что их использование само по себе не сопровождается загрязнением среды и не может повлиять на суммарный тепловой баланс планеты. Однако это совсем не означает их экологической нейтральности: эти ресурсы не могут быть ощутимо затронуты без того, чтобы не наступили трудно предсказуемые изменения климата и географической среды.

      Гидроэнергия стоит на первом месте среди возобновимых ресурсов техносферы. Теоретический потенциал материкового стока близок к 6 ТВт (190 ЭДж/год). Реальный гидроэнергетический потенциал всех рек мира оценивается в 2,9 ТВт. Фактически в настоящее время для выработки электроэнергии используется менее 1/4 этого потенциала. В мире работают десятки тысяч ГЭС с общей электрической мощностью 660 ГВт. Для их работы на реках созданы водохранилища, часто целые каскады водохранилищ. Поскольку возраст большинства гидроэнергетических узлов насчитывает несколько десятилетий, а срок их амортизации колеблется от 50 до 200 лет, можно предвидеть немало проблем, связанных с реконструкцией гидроузлов. На рост использования гидропотенциала уже сейчас накладывается ряд экономических и экологических ограничений.

      Суммарная оценка мощности устойчивых ветров в  нижних слоях атмосферы имеет  порядок 5 ТВт. Технически возможный объем ветроэнергетики мал по сравнению с этой величиной (максимальная оценка для 2020 г. равна 288 ГВт) и вряд ли составит более 2% всей энергетики техносферы, хотя в отдельных странах эта доля может быть намного больше. Так, в Дании ветросиловые установки обеспечивают уже более 3,7% выработки электроэнергии. Общая установленная электрическая мощность ветроэнергетических установок промышленного типа в мире сейчас достигла 11 ГВт и, вероятно, будет увеличиваться.

      Геотермальная энергия Земли, обусловленная гравитационной динамикой и радиоактивным распадом в недрах, в целом оценивается мощностью около 32 ТВт. Если бы ее выход к поверхности земли был равномерным (т.е. составлял 0,063 Вт/м2), то она была бы непригодна для использования. Однако значительные ее выходы локализованы в районах вулканической активности, где концентрация подземного тепла во много раз больше. По результатам обследования таких районов, геотермальные ресурсы мира, в принципе доступные для использования, оценены в 140 ГВт. При этом имеются в виду только геотермальные выходы, а не нагретые скальные породы. Освоены эти ресурсы пока еще мало. Общая установленная мощность ГеоТЭС в мире не превышает 1,5 ГВт.

Информация о работе Ресурсы биосферы