Автор работы: Пользователь скрыл имя, 11 Декабря 2011 в 15:36, реферат
Энергия. Главными источниками биологически используемой энергии для подавляющего большинства живых существ на Земле являются солнечный свет и пища, в органических веществах которой аккумулирована солнечная энергия. Валовой ресурс солнечной энергии практически неисчерпаем. Ее доступность для земных потребителей обусловлена солнечной постоянной и климатом, а также первичной продукцией биосферы.
Однако из нескольких миллионов биологических видов в поле зрения людей, занятых изучением или хозяйственным использованием организмов, попадает едва лишь сотая часть. В то же время из-за деградации природной среды, загрязнения, разрушения биоценозов биосфера ежегодно теряет 10-15 тысяч биологических видов, преимущественно низших форм.
Особенно невосполнима утрата редких эндемических видов растений, насекомых, рыб и других животных, как это происходит в районах со своеобразной флорой и фауной. Причины те же: хозяйственное освоение, перепромысел, вырубка лесов, загрязнение. За последние 40 лет из-за полного исчезновения или резкого снижения численности популяций был прекращен промысел 18 ценных видов рыб. По этим же причинам международными соглашениями резко ограничен промысел китов и некоторых ластоногих. За всю историю охоты на животных человеком полностью уничтожены десятки видов крупных млекопитающих и птиц. В их числе мамонт, ирландский олень, тур, квагга, Стеллерова корова, сумчатый волк, птица моа, дронт, бескрылая гагарка, американский странствующий голубь и другие. Почти полностью истреблены и спасены лишь в состоянии крайнего коллапса природных популяций такие виды, как бизон, зубр, американский бобр, белохвостый гну, олень Давида, кулан, сайгак, выхухоль, котик и др. По данным Международного Союза охраны природы, только за четыре последних столетия исчезло 62 вида млекопитающих десяти отрядов.
Считается, что под угрозой исчезновения сейчас находится более 10 тыс. видов, в основном высших растений, позвоночных животных и некоторых групп насекомых.
Биоресурсы России. Россия владеет почти пятой частью мировых запасов леса. Общая площадь земель лесного фонда РФ - 11,6 млн км2, покрытая лесом площадь - 7,9 млн км2. В 1895 году площадь лесов Российской империи оценивалась в 1 миллиард десятин (10,9 млн км2) и в границах нынешней РФ (без лесов Финляндии, Прибалтики, Польши и Белоруссии) занимала 61% территории. Следовательно, за 100 лет Россия потеряла почти четверть своих лесов.
Вырубка леса производится ежегодно примерно на 2 млн га; еще 1 млн га лесов уничтожается пожарами. Кроме этого происходит усыхание лесов за счет возникновения очагов болезней и повреждения вредителями. Около 10 млн га лесов подвержено воздействию индустриальных загрязнений.
Восстановление леса отстает от вырубки и других потерь в соотношении 1: 4. По экспертным оценкам, площадь лесов Российской Федерации ежегодно сокращается на 2 млн га.
Из-за низкого технологического уровня переработки древесины промышленностью и строительством у нас осваивается только 1/8 часть заготовленного леса. Много круглого леса идет на экспорт. Миллиарды кубометров гниют или сгорают на лесосеках, устилают русла лесосплавных рек и озер. По выработке пиломатериалов, древесных плит, фанеры, картона и бумаги на 1 кубометр заготовленного леса мы отстаем от Канады, Швеции, Финляндии и других стран в 5-7 раз.
Но лес - не только источник древесины. С экологической точки зрения, лес - это ресурс фотосинтеза и самоочищения биосферы. Функции леса многообразны. Кроме общеэкологических и ресурсных функций лес имеет огромное климатическое, санитарно-гигиеническое и рекреационное значение. По мнению В.Г.Горшкова (1990), «более 60% территории России представляет собой до сих пор один из оставшихся на Земле уникальных ресурсов, поддерживающих существование на планете развитых стран Европы и Америки».
Наличие больших пространств, относительно мало затронутых хозяйственной деятельностью, способствует сохранению биоразнообразия бореальной зоны России, насчитывающей около 2800 видов высших растений и до 4000 видов позвоночных животных.
Мировое потребление энергии неуклонно растет. За период с 1970 по 1990 гг. использование энергии в величинах нефтяного эквивалента возросло с 5 до 8,8 млрд т. По прогнозам Мировой энергетической конференции, спрос на энергию к 2020 г. может увеличиться еще на 75%. Доминирующим источником энергии по-прежнему остается ископаемое топливо (рис.5.5).
Невозобновимые энергоресурсы. В табл. 5.5 сопоставлены запасы и современное потребление главных видов ископаемого топлива. Разведанные запасы почти на два порядка меньше геологической оценки их суммарного содержания в земной коре. Преобладающая масса содержится в рассеянных месторождениях горючих сланцев, где концентрация углеводородов ниже 3%. Реальные эксплуатационные запасы в 2-3 раза меньше разведанных.
Доступные
запасы нефти и газа примерно на
два порядка превышают их современное
годовое извлечение, запасы угля - на
три порядка. Другими словами, сравнивая
цифры, относящиеся к оценке разведанных
запасов наиболее доступных видов топлива
(второй столбец цифр), с цифрами их современного
потребления (третий столбец), можно назвать
максимальное время, на которое этих запасов
может хватить. Для подвижной нефти - это
65 лет, для газа - 44 года, для угля - 320 лет.
Учитывая, что потребление продолжает
расти, реальные значения должны быть
заметно меньше. Однако решающее влияние
на объем добычи топлива оказывает пока
еще не конечность запасов, а растущий
спрос и политика цен. Можно смело прогнозировать
долговременную тенденцию роста мировых
цен на основные виды топлива в XXI веке.
Рис.
5.5. Мировое потребление
энергии (Медоуз и
др., 1992)
Месторождения ископаемых топлив расположены неравномерно. По 1 /З потенциальных мировых запасов угля и газа и более 20% нефти находятся в России. Почти 35% нефти и около 17% газа сосредоточено на Среднем Востоке. Большими потенциалами угля, газа и нефти богата Северная Америка. Эти три региона располагают почти 70% разведанных мировых запасов ископаемого топлива.
Кроме ископаемого топлива в странах Азии, Африки и Южной Америки продолжается использование довольно большого количества растительного топлива, в основном древесины. Суммарное количество энергии, получаемое за счет ископаемых и современных биогенных энергоресурсов, составляет около 12,6 млрд т условного топлива в год.
Весь
потенциал ископаемых топлив, отраженный
в итоге первого столбца табл.
5.5, конечно, колоссален по масштабам человеческой
энергетики, но его реальная доступность
даже в будущем вряд ли превысит доли процента.
А по масштабам земного бюджета солнечной
энергии этот потенциал не так уж велик:
он немного превышает 4-летний приток.
Следует, однако, помнить, что земные запасы
угля, нефти и газа сложились за несравненно
большее время, минимум за 100-150 млн лет.
Топливо, на образование которого когда-то
уходило несколько тысяч лет, мы сегодня
сжигаем за год.
Таблица 5.5
Потенциальные и используемые ресурсы горючих ископаемых мира* (млрд т условного топлива)
Горючие ископаемые | Оценка количества в недрах | Разведанные запасы | Потребление (1990 г.) |
Твердое топливо | 7800 | 1280 | 3,96 |
Нефть подвижная | 430 | 310 | 4,72 |
Тяжелая и запечатанная нефть | 1240 | 70 | 0,27 |
Доступный природный газ | 330 | 110 | 2,48 |
Нетрадиционный газ | 1600 | 25 | 0.04 |
Горючие сланцы | 353000 | 260 | 0,08 |
Итого | 364400 | 2055 | 11,55 |
По данным Мировой энергетической конференции (МИРЭК) 1992 г., 1 т у.т. = 29,3 ГДж. Энергетические эквиваленты масс: 1 т угля - 28 ГДж; 1 т нефти - 43 ГДж; 1 т газа (1400 м3) - 52 ГДж. Приблизительно 0,8% данных по запасам и использованию твердого топлива относятся к торфу
На втором месте по значению в энергоресурсах техносферы стоит ядерное топливо, главным источником которого является ископаемый уран. Большая часть урана в литосфере сильно рассеяна. По данным Мировой энергетической конференции, общие рудные запасы урана составляют 20,4 млн т, в том числе разведанные - 3,3 млн т. Содержание урана в породах большинства месторождений, имеющих перспективное коммерческое значение, колеблется от 0,001 до 0,03%. Поэтому производится значительное рудное обогащение. Природный уран на 99,3% состоит из изотопа U-238 и содержит только 0,7% изотопа U-235, масса которого обладает способностью к самопроизвольной цепной реакции. Для промышленных целей производят изотопное обогащение урана с доведением содержания U-235 до 3%. Такой уран (в основном в виде 1)0э) используется в большинстве современных реакторов.
При расходовании 1 кг урана в активной зоне реактора выделяется в зависимости от физических условий до 65 ТДж теплоты. Это соответствует сжиганию 2300 т угля. Если в качестве перспективного ресурса принять разведанные запасы, то общее количество энергии, которое можно получить в реакторах на тепловых нейтронах, составит около 1000 ЭДж. Для реакторов-размножителей на быстрых нейтронах, использующих реакцию деления U-238 и нарабатывающих плутоний, этот потенциал может возрасти до 140000 ЭДж и в 2,5 раза превысит сумму разведанных запасов органических топлив. К сожалению, часть этого ресурса уже переведена
в оружейный плутоний и вместе с массами отработанных радионуклидов превратилась в потенциал колоссального экологического риска. Общее потребление урана всеми странами за 50 лет приблизилось к 1,5 млн т. Для этого понадобилось переработать не менее 10 млрд т горной массы.
В настоящее время в мире работает более 400 реакторов АЭС с суммарной тепловой мощностью около 1200 ГВт. Они потребляют за год около 60 тыс. т урана и вносят 10-процентный вклад в общее техногенное выделение теплоты.
Возобновимые энергоресурсы. Хотя использование невозобновимых энергоресурсов ископаемых топлив создает самые серьезные экономические и экологические проблемы, человек намного меньше использует возобновимые энергоресурсы. Не потому, что они меньше (они намного больше), а потому, что их колоссальная энергия непостоянна, распределена на больших пространствах, мало концентрирована и плохо поддается контролю. Сознавая мощь стихий, человек предпочитает бензобак, ружье, электропровод или лазерный луч, где энергия сжата, канализована и находится в его полной власти.
Еще в 1978 г. ООН было введено понятие «новые и возобновляемые источники энергии», включавшее гидроэнергию, солнечную, геотермальную, ветровую, энергию морских волн, приливов и океана, энергию биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников.
Геофизические ресурсы энергии очень велики. Только близкие к поверхности суши и океана перемещения воздушных и водных масс имеют мощность порядка 25 ПВт, что в 2000 раз больше топливной мощности техносферы. Принципиальное отличие этих ресурсов от топливных заключается в том, что их использование само по себе не сопровождается загрязнением среды и не может повлиять на суммарный тепловой баланс планеты. Однако это совсем не означает их экологической нейтральности: эти ресурсы не могут быть ощутимо затронуты без того, чтобы не наступили трудно предсказуемые изменения климата и географической среды.
Гидроэнергия стоит на первом месте среди возобновимых ресурсов техносферы. Теоретический потенциал материкового стока близок к 6 ТВт (190 ЭДж/год). Реальный гидроэнергетический потенциал всех рек мира оценивается в 2,9 ТВт. Фактически в настоящее время для выработки электроэнергии используется менее 1/4 этого потенциала. В мире работают десятки тысяч ГЭС с общей электрической мощностью 660 ГВт. Для их работы на реках созданы водохранилища, часто целые каскады водохранилищ. Поскольку возраст большинства гидроэнергетических узлов насчитывает несколько десятилетий, а срок их амортизации колеблется от 50 до 200 лет, можно предвидеть немало проблем, связанных с реконструкцией гидроузлов. На рост использования гидропотенциала уже сейчас накладывается ряд экономических и экологических ограничений.
Суммарная оценка мощности устойчивых ветров в нижних слоях атмосферы имеет порядок 5 ТВт. Технически возможный объем ветроэнергетики мал по сравнению с этой величиной (максимальная оценка для 2020 г. равна 288 ГВт) и вряд ли составит более 2% всей энергетики техносферы, хотя в отдельных странах эта доля может быть намного больше. Так, в Дании ветросиловые установки обеспечивают уже более 3,7% выработки электроэнергии. Общая установленная электрическая мощность ветроэнергетических установок промышленного типа в мире сейчас достигла 11 ГВт и, вероятно, будет увеличиваться.
Геотермальная энергия Земли, обусловленная гравитационной динамикой и радиоактивным распадом в недрах, в целом оценивается мощностью около 32 ТВт. Если бы ее выход к поверхности земли был равномерным (т.е. составлял 0,063 Вт/м2), то она была бы непригодна для использования. Однако значительные ее выходы локализованы в районах вулканической активности, где концентрация подземного тепла во много раз больше. По результатам обследования таких районов, геотермальные ресурсы мира, в принципе доступные для использования, оценены в 140 ГВт. При этом имеются в виду только геотермальные выходы, а не нагретые скальные породы. Освоены эти ресурсы пока еще мало. Общая установленная мощность ГеоТЭС в мире не превышает 1,5 ГВт.