Результаты исследования рыб, как биоиндикаторов водной экосистем

Автор работы: Пользователь скрыл имя, 24 Декабря 2012 в 19:50, реферат

Описание работы

Цель работы заключается в определении роли рыбы как биоиндикаторов экологического состояния водной экосистемы.
Для достижения поставленной цели решаются следующие задачи: рассматривается общая характеристика рыб и водных экосистем, рассматривается идеология биологических методов, проводится анализ показателей состояния популяций рыб и их биоразнообразия на примере Обь – Иртышского бассейна.

Содержание работы

Аннотация………………………………………………………………… 2
Введение ………………………………………………………………….. 4
1 Материалы и методы исследования рыб как биоиндикаторов водной экосистем……………………………..
6
1.1 Общая характеристика и классификация рыб……………... 6
1.2 Характеристика водных экосистем и методы оценки качества воды…………………………………………………….
11
1.3 Идеология биологических методов………………………… 21
2 Результаты исследования рыб, как биоиндикаторов водной экосистем………………………………………………………….
26
2.1 Рыбы как индикаторы качества вод………………………… 26
2.2 Анализ показателей состояния популяций рыб и их биоразнообразия на примере Обь – Иртышского бассейна 28
Выводы…………………………………………………………………….. 34
Список литературы………………………………………………………. 38

Файлы: 1 файл

КУРСОВИК БИОИНДИКАЦИЯ.doc

— 194.50 Кб (Скачать файл)

По мере дальнейшего  загрязнения ситуация ухудшается: исчезает все больше видов, нарушаются пищевые связи, нарушаются круговороты веществ и использование энергии в системе. Снижается устойчивость экосистемы, ее способность к переработке веществ и «самоочищению», экосистема деградирует. По разнообразию отмеченных в водоеме видов-индикаторов и их обилию определяют уровень сапробности водоема

Попадание в водоем токсичных веществ вызывает, как правило, процессы деградации экосистемы, выраженность которых зависит от свойств токсиканта, его концентрации, степени разбавления, скорости разложения токсичного вещества, времени воздействия и ряда других причин. К токсичным веществам относятся соединения тяжелых металлов, хлорорганические, фосфороорганические и другие пестициды, нефть и продукты ее переработки, синтетические поверхностно-активные вещества, кислоты, фенолы и другие соединения. Комплексная характеристика качества воды, характеризующая ее загрязненность токсичными веществами - токсобнось. В качестве быстрого метода интегрального определения токсичности воды используются методики биотестирования, то есть использования биологических объектов для выявления степени токсичности тех или иных веществ или их суммарного воздействия.

Конечно же, для определения химического  состава воды, а значит и для выявления  находящихся в ней загрязняющих  веществ  можно  использовать специальные приборы. Они позволяют получить точные значения концентраций    загрязнителей. Но приборные методы имеют свои недостатки:

- с их помощью нельзя точно оценить, насколько полученные концентрации 
опасны для водных организмов и для нас с вами;

- они не учитывают возможного взаимодействия различных загрязняющих 
веществ (а это взаимодействие, как правило, происходит);

- они оценивают качество воды на момент отбора пробы и ничего не скажут нам про аварийный сброс загрязнителя, произошедший на реке неделю назад;

- они достаточно сложны и дороги.

Лучшими «приборами», оценивающими качество воды, являются сами водные обитатели. Конечно, эти «приборы» тоже не идеальны: например, у них нет стрелок и шкал. Поэтому с помощью методов биоиндикации мы можем оценить только общий уровень загрязненности, но не узнаем точных концентраций того или иного вещества. Зато эти методы относительно дешевы и не требуют специального оборудования. Многие из них довольно просты и могут быть использованы в работе юными исследователями, А главное, биологические методы дают комплексную оценку качества воды, учитывают взаимодействие разных загрязняющих веществ и могут помочь нам в том случае, когда источник загрязнения имеет переменную мощность или непостоянный химический состав.

Данные  о качестве воды, полученные при  помощи биологических методов, можно соотнести с официально принятыми показателями: классами качества воды (ККВ), уровнями сапробности. Это позволяет сравнивать данные, полученные при помощи приборных и биологических методов[15].

1.3 Идеология биологических методов

Выделяют  две основные группы биологических  методов: это методы биотестирования и биоиндикации.

В методиках биотестирования в качестве основного показателя используется физиологическая или поведенческая реакция на загрязнение воды определенного вида живых организмов. При этом исследователи отбирают пробу воды в изучаемом водоеме и ставят лабораторный эксперимент, для чего используется искусственно поддерживаемая культура теспг-органишов. С помощью подобного эксперимента можно, например, оценить уровень загрязненности водопроводной воды, которая практически не имеет собственной биоты. Чувствительность многих методов биотестирования очень высока и сравнима с чувствительностью методов газовой хроматографии[6].

При оценке качества воды в лабораторном эксперименте учитываются такие показатели как выживаемость тест-организмов, темпы их размножения, интенсивность жизненных процессов (дыхание, пищеварение, фотосинтез), поведенческие реакции. Подобные опыты направлены прежде всего на определение высокотоксичных, сильнодействующих химических веществ.

Существует  ряд требований по выбору тест-организмов. Они должны быть некрупными, легко культивироваться, иметь короткий жизненный цикл и обладать средней степенью чувствительности к токсикантам. На практике в качестве тест-организмов обычно используются простейшие, плоские черви, коловратки, моллюски, многие ракообразные и одноклеточные водоросли.

Методы биоиндикации применимы только к водоемам, имеющим собственную биоту. Они учитывают реакцию на загрязнение целых сообществ водных организмов или же отдельных систематических групп. При этом исследователи непосредственно на водоеме учитывают факт присутствия в нем индикаторных организмов, их обилие, наличие у них патологических изменений[8].

Несмотря  на то, что и естественные условия  водоемов, и виды загрязнений очень разнообразны, можно выделить несколько универсальных реакций сообществ водных организмов на ухудшение качества воды. Прежде всего это:

- уменьшение видового разнообразия (в 2-4, а иногда и в десятки раз);

- изменение обилия водных организмов.

Причем  обилие может как снижаться (при  очень высоком уровне загрязнения или при наличии токсичных загрязнителей), так и расти по сравнению с нормальным состоянием сообщества. Этот рост объясняется тем, что в водоемах, особенно при их загрязнении органическими веществами, могут оставаться немногие, но устойчивые к загрязнению виды животных. В таких условиях они достигают очень высокого обилия. Например, в Невской губе численность малощетинковых червей может достигать десятков и даже сотен тысяч особей на квадратный метр дна.

Именно  эти закономерности применяются  во многих методиках биоиндикации. К их числу относятся индексы видового разнообразия и методы, учитывающие соотношение обилия разных групп водных организмов. Кроме этого, часто учитывается способность определенных групп организмов обитать в водоемах с тем или иным уровнем загрязненности.

Надо  особо отметить то, что представители  любой надвидовой систематической группы (рода, семейства, отряда) практически никогда не обладают одинаковыми экологическими потребностями. В состав таких групп могут входить совершенно разные с точки зрения отношения к загрязнению виды: устойчивые к загрязнителям, неустойчивые, виды-универсалы, способные жить в очень широком спектре внешних условий и т.д. Одной из распространенных ошибок является использование надвидовых таксонов как индикаторов качества воды без критического рассмотрения набора входящих в этот таксон видов.

Большую роль для результатов биоиндикации состояния водоема играет выбор тех групп живых организмов, которые учитываются исследователем. Дело в том, что водные сообщества очень разнообразны и включают в себя несколько крупных экологических группировок, реакции которых на загрязнения могут серьезно различаться. Это экологические группы животных: зоопланктон, зообентос, перифитон, нектон; и растений: фитопланктон, фитобентос. Каждая группа организмов в качестве индикатора имеет свои преимущества и свои недостатки[15].

Так, сообщества планктонных организмов (т.е. пассивно парящих в толще воды) очень быстро реагируют на любые изменения ее качества. Они представляют собой как бы "моментальный снимок" состояния водоема. Но методы биоиндикации, основанные на реакциях планктонных сообществ, применимы прежде всего для озер, и только с большой осторожностью - для текущих водоемов.

Кроме того, организмы фитопланктона (водоросли и сине-зеленые бактерии) не обладают достаточной чувствительностью к фекальному загрязнению и тяжелым металлам. Зоопланктон, в свою очередь, слабо реагирует на изменения в водоеме концентрации соединений азота и фосфора.

Организмы бентоса менее динамично реагируют на быстрые изменения уровня загрязненности. Зато, благодаря продолжительному жизненному циклу многих донных животных, их сообщества надежно характеризуют изменения водной среды за длительные периоды времени.

Необходимо  помнить, что в своем естественном состоянии различные природные водоемы могут сильно отличаться друг от друга. На водную флору и фауну действуют такие показатели как глубина водоема, наличие и скорость течения,  кислотность  воды,  мутность,     температурный режим,   количество растворенной органики, соединений азота и фосфора.

На  все эти параметры влияет как  антропогенная нагрузка, так и  естественные процессы, происходящие в водоемах. Значит, для водоемов разных типов в норме будет характерен разный видовой состав и обилие гидробионтов. Более того, в водоемах с наиболее чистой водой количество видов животных и растений, и их обилие обычно ниже, чем в тех водоемах, где органические вещества, соединения азота и фосфора присутствуют в умеренных концентрациях. Для многих водных организмов умеренный уровень загрязнения является оптимальным состоянием среды обитания. Существуют также «виды-универсалы», обладающие высокой экологической пластичностью и способные переносить значительные колебания степени загрязненности водоема. Понятно, что такие виды не представляют интереса для биоиндикации. Таким образом, для       оценки   состояния   воды   при   помощи   биологических   объектов необходимо  выбирать  надежный,  проверенный  метод,  подходящий  для данного типа водоема и поставленных задач, нужно четко придерживаться методики отбора и обработки проб, все      биологические      закономерности      являются      закономерностями статистическими. Поэтому  объем  используемого  материала должен быть достаточно велик[15].

И сами живые организмы, и сообщества, которые  они образуют чрезвычайно сложные системы. Любая особь и любой вид в природе испытывает на себе влияние огромного количества факторов и, в свою очередь, сам влияет на них. Все многообразие этих связей учесть практически невозможно. Также трудно предсказать и реакцию конкретного организма на внешнее воздействие: ведь двух одинаковых организмов в природе не существует.

Поэтому нельзя делать выводы об уровне загрязненности воды на основе реакций одной особи тест-организма или одной-двух проб, взятых в исследуемом водоеме. Не исключено, что может попасться «нетипичная» особь, устойчивость которой к загрязнению будет значительно выше или ниже, чем средняя для организмов этого вида. Точно также и единственная отобранная в водоеме проба может быть взята в «нетипичном» месте. И все выводы, сделанные на основе таких «наблюдений», будут неверными.

 

 

 

2 Результаты  исследования рыб, как биоиндикаторов  водной экосистемы

2.2 Рыбы как индикаторы качества вод

Многочисленные публикации свидетельствуют об успешном использовании рыб как индикаторов нарушений «здоровья» экосистемы при токсичном загрязнении вод. Рыбы занимают верхний уровень в трофической системе водоемов. В условиях интенсивного загрязнения степень устойчивости организма рыб определяется способностью эффективно метаболизировать и выводить поступающие в организм токсиканты. Патологические изменения в их организме позволяют определить степень токсичности водной среды, оценить кумулятивные эффекты, а также сформировать представление о потенциальной опасности группы веществ, поступающих в водоем, и для человека. Изменения физиологических показателей рыб регистрируются численными значениями, которые возможно использовать при построении доза-эффектных зависимостей. Поэтому в ряде крупных международных проектов  в оценках экологических последствий загрязнения вод предпочтение отдается исследованию рыб на уровне организма[10].

Для диагностики «здоровья» экосистемы, как отмечалось, важны системные исследования, а результаты - статистически обеспеченные. Однако многие методы, в особенности биохимические или физиологические, достаточно сложны, поэтому не могут быть массовыми при исследованиях на природных водоемах. Методический двухуровневый подход позволяет сочетать в оптимальном соотношении возможность получения массового материала и установления точного диагноза. Выделен первый макроуровень обследования индивидуумов, по которому заболевания выявляются на основе массового визуального обследования организмов и предварительный диагноз устанавливается по клиническим и патологоанатомическим симптомам отравлений.

Второй микроуровень диагностики включает в себя гематологические, гистологические, биохимические, инструментальные физиологические и другие методы. Последние не могут быть массовыми в силу трудоемкости, но используются для уточнения диагноза и оценки последствий патологических изменений в организме рыб. Необходимым условием является также отбор проб от здоровых особей для установления «нормы» физиологического состояния[8].

Метод клинического и патоморфологического анализа заболеваний (макроуровень). В 1970-е гг. методы патофизиологического исследования рыб получили широкое развитие в связи с участившимися случаями их массового отравления вследствие загрязнения природных водоемов. Методы клинического и патолого-анатомического обследования организмов, применяемые в ветеринарии и медицине, были использованы для обследования рыб с целью оценки последствий токсичного загрязнения водоемов. О.Н. Крылов  и Н.М. Аршаница предложили схему описания симптомов отравления рыб и пятибалльную систему оценки тяжести их заболеваний, В настоящее время получено много данных о воздействии различных групп токсикантов на жизнедеятельность рыб, а также о многочисленных биохимических, физиологических и морфологических нарушениях, возникающих в организмах под их воздействием.

Метод клинического и патологоанатомического обследования организма применяется для массового обследования рыб в зонах загрязнения. Визуальное определение признаков интоксикации организма (макродиагностика) проводится в первый час после отлова рыбы. При внешнем осмотре обращают внимание на интенсивность окраски (состояние пигментных клеток — меланофоров): целостность плавниковой каймы и лучей; общее содержание слизи на теле рыбы; состояние чешуйного покрова, жаберных крышек, ротовой полости, анального отверстия; на случаи гиперемии, подкожных кровоизлияний или появления язв, гидремии тела; деформацию костей черепа и скелета, а также состояние хрусталика и роговицы глаза. При открытых жаберных крышках обследуют жабры, отмечают их цвет, наличие и количество слизи, состояние жаберных лепестков (срастание, слипание, расширение или истончение) [10].

Информация о работе Результаты исследования рыб, как биоиндикаторов водной экосистем