Удивительные свойства воды

Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 20:19, реферат

Описание работы

Разве в космосе вода есть? Да, оказывается, вода есть в космическом пространстве. Десять лет назад астрофизики с помощью радиотелескопа обнаружили идущие к нам из космоса странные короткие радиоволны
— длиной 1,35 см. Оказалось, что это излучение исходит от загадочных гигантских облаков, расположенных в нашей Галактике в созвездии Ориона, Кассиопеи и в некоторых других созвездиях.
Теоретический расчет показал, что такое излучение принадлежит... воде. Молекулы водяного пара поглощают инфракрасную часть спектра света звезд и переходят в возбужденное состояние.

Файлы: 1 файл

Реферат на тему- «Вода. Структура и необычные свойства» (1).doc

— 461.00 Кб (Скачать файл)

Химик на этот вопрос ответит почти так же, между ними нет почти никакой разницы. Все их химические свойства почти неразличимы: в каждой из этих вод натрий будет одинаково выделять водород, каждая из них при электролизе будет одинаково разлагаться, все их химические свойства будут почти совпадать. Это и понятно: ведь химический состав у них одинаков. Это вода.

Физик не согласится. Он укажет на заметную разницу в их физических свойствах; и кипят и замерзают они  при различных температурах, плотность  у них разная, а упругость их пара тоже немного различна. И при электролизе они разлагаются с разной скоростью. Легкая вода чуть быстрее, а тяжелая — помедленнее. Разница в скоростях ничтожна, но остаток воды в электролизере оказывается немного обогащенным тяжелой водой. Таким путем она и была открыта. Изменения в изотопном составе мало влияют на физические свойства вещества. Те из них, которые зависят от массы молекул, изменяются заметнее, например скорости диффузии молекул пара.

Биолог, пожалуй, станет в тупик  и не сразу сумеет найти ответ. Ему нужно будет еще немало поработать над вопросом о различии между водой с разным изотопным составом. Совсем недавно все считали, что в тяжелой воде живые существа не могут жить.

Ее даже мертвой водой называли. Но оказалось, что если очень медленно, осторожно и постепенно заменять протий в воде, где живут не которые микроорганизмы, на дейтерий, то можно их приучить к тяжелой воде и они будут в ней неплохо жить и развиваться, а обычная вода для них станет вредной.

Кому же нужна тяжелая вода? Человечеству? Оно уже стоит у порога, за которым ждет его страшная угрозаэнергетического голода. И вся надежда связана с тем, что будет решена проблема, как использовать для энергетики тяжелую воду.

Зачем нужна тяжелая  вода теперь? Все, что мы до сих пор говорили, касалось тех свойств, которые зависят от строения атомов, от их порядкового номера, от числа и расположения электрических зарядов в атомных ядрах и электронов в молекуле. Только это и определяет химическое поведение вещества. Строение молекулы не зависит от массы атомного ядра. Поэтому одинаковые молекулы с разным изотопным составом химически почти неразличимы.

Правда, в науке слово «почти»  нужно употреблять очень осторожно  и осмотрительно. Это верно, что  химические соединения, различные по изотопному составу, по химическим свойствам почти неразличимы. Но все же они ведут себя немного по-разному, хотя наблюдаемые при этом изотопные эффекты очень невелики: чуть-чуть различаются по скорости реакций, у них чуть-чуть различны значения константы равновесия. Различаются между собой спектры одинаковых по составу и строению молекул с разным изотопным составом.

Сходство в свойствах изотопных  соединений прекращается, когда вопрос касается кинетических и ядерных  характеристик. Молекула, содержащая тяжелый  изотопный атом, при той же температуре движется с меньшей скоростью, при столкновении таких частиц иначе протекает обмен кинетической энергией. А самое главное — изменяется способность вступать в ядерные превращения. Вот эти-то свойства резко отличают тяжелую воду от любой другой воды с иным изотопным составом: ведь в ее состав входит тяжелый водород. В наши дни тяжелая вода успешно применяется в атомной энергетике для замедления нейтронов в ядерных реакторах.

Роль замедлителя в атомном  котле очень важна. Когда ядро урана-235 распадается на два атомных ядра-осколка, из него одновременно вылетают два или три нейтрона. Скорость их огромна, она превышает 20 000 км/с. Эти быстрые нейтроны не могут сами вызвать новый распад в других атомах урана. Они пролетят мимо них с такой быстротой, что просто не успеют прореагировать.

Нейтроны нужно замедлить примерно до 2,2 км/с, так чтобы они пришли в равновесие с тепловым движением  окружающих молекул. При этом энергия  нейтронов должна уменьшиться почти  в 60 млн. раз. Далеко не всякое вещество пригодно в качестве замедлителя. Выбор очень ограничен. Во-первых, оно не должно поглощать нейтроны, вступая само в ядерные реакции, а во-вторых, оно должно состоять обязательно из легких элементов с малыми массовыми числами. При соударении с тяжелым ядром скорость нейтрона почти не изменяется, точно так же как почти не изменяется скорость мяча, отскакивающего при ударе о стенку.

Самым лучшим замедлителем мог бы быть легкий водород, но он заметно  поглощает нейтроны. Тяжелый водород  их почти не поглощает. Нейтрону, попавшему в тяжелую воду, достаточно всего 25 раз столкнуться с тяжелым водородом, чтобы потерять свою высокую энергию и приобрести способность взаимодействовать с ураном. Неплохой замедлитель — углерод в форме графита, но нейтрону в нем приходится испытывать около 110 столкновений, чтобы утратить начальную скорость.

Используя тяжелую воду как замедлитель, конструкторы создают  очень эффективные, а главное, легкие и компактные атомные энергетические установки, применяемые в основном на транспорте.

Зачем еще нужна тяжелая вода? Чтобы исследовать механизм многих химических, физических и биологических процессов.

Это, конечно, скромное, но очень важное применение тяжелой воды. Наверное, нет ни одного природного процесса, в котором не принимали бы участия  вода или водород. Атомы тяжелого водорода — наиболее важные меченые атомы. Их, как разведчиков в бой, направляют химики в исследуемые реакции, чтобы проследить за ее ходом. В наши дни уже возникла и быстро развивается самостоятельная область науки — химия изотопного обмена. Наиболее важная ее задача — изучать с помощью дейтерия механизм химических реакций при получении органических соединений и исследовать их строение.

Почему же человечеству будет нужна именно тяжелая вода? Чтобы ответить на этот вопрос, нельзя обойтись без самого замечательного языка, без языка цифр и формул. Он понятен всем по-настоящему грамотным людям, в какой бы стране они ни жили и на каком бы языке ни разговаривали.

Для химиков теперь очень точно  измерены массы всех изотопных атомов. Вот некоторые значения этих масс:


 

Физики сумели установить возможность  ядерных реакций между легкими  атомами, в том числе возможность реакции между атомами дейтерия:

В такой реакции неприменим закон сохранения массы, каким пользуется обычная химия; в результате реакции  получается недостача:

Это немалая недостача. Она означает, что если бы удалось  найти условия, при которых может  протекать реакция между двумя  молями тяжелого водорода, то, согласно уравнению Эйнштейна:

можно было бы получить энергию:

0,00433х(3,0х1010)2 эрг=3,9х1018 эрг=3,9х1011 Дж.

Это немалая энергия. В наше время, чтобы получить такую  энергию, приходится сжигать в топках котлов ни много ни мало 13,5 т первосортного угля. А ведь его еще нужно добыть из шахт и доставить из-под земли к топке.

Между тем в соответствии с уравнением ядерной реакции  такую энергию можно получить при затрате всего лишь двух молей  дейтерия, которые содержатся в одном моле тяжелой воды. Следовательно, простой воды потребуется:

или 120 л. Значит, из одного литра обычной воды можно добыть больше энергии, чем можно получить ее из ста килограммов высококачественного угля. А запасы воды на нашей Земле огромны.

Что же мешает получать энергию из воды? Такая возможность пока что кажется фантастической, но она вполне реальна. На пути к ее осуществлению наука уже преодолела немало трудностей. Решена сложнейшая проблема, как извлекать тяжелую воду из природной. Теоретически исследованы и рассчитаны условия, при которых возможны ядерные реакции между легкими атомами.

Но, к сожалению, исследователи встретили много трудностей. Насколько они серьезны, может показать простой расчет: чтобы два атома могли вступить в ядерную реакцию, их ядра должны столкнуться, т. е. сблизиться до расстояния примерно 10–14 м, начиная с которого межъядерные силы уже могут преодолеть электростатическое отталкивание.

Но ядра атомов защищены, как броней, своими электронными оболочками. Эти оболочки простираются на расстояние в десятки тысяч раз большее. А самое главное — ядра заряжены и отталкиваются друг от друга, как и все одноименно заряженные тела. Энергию, необходимую для того, чтобы преодолеть их взаимное отталкивание, рассчитать нетрудно. Из закона Кулона следует, что потенциальная энергия двух ядер, сблизившихся на расстояние 10–14 м, должна быть равна:

Если между собой сталкиваются элементы с атомными номерами Z1 и Z2.

Конечно, мир атомных  величин не очень привычен и нагляден, и трудно сразу представить себе, какова же эта энергия — мала или не очень мала. Но легко сообразить, с какой скоростью должны сталкиваться атомы, чтобы преодолеть потенциальную энергию электростатического отталкивания. Они должны обладать не меньшей кинетической энергией или по крайней мере равной. Следовательно, можно написать:

Массу одного атома можно найти из атомной массы, зная, сколько атомов содержится в одном моле:

Можно найти и скорость, с которой должны столкнуться  атомы, чтобы могла начаться ядерная реакция:

У дейтерия атомный номер Z=1. Масса изотопа А=2, следовательно, скорость атомов должна быть равна: V=3,8х108 м/с, или 3800 км/с. При обычной температуре физикам известна средняя скорость теплового движения у атомов дейтерия, она равна всего лишь 1,9 км/с. При комнатной температуре, равной примерно 293 К, кинетическая энергия молекул возрастает пропорционально абсолютной температуре, или, что то же самое, пропорционально квадрату скорости.

Следовательно, чтобы  средняя скорость молекул дейтерия была достаточной для реакции  между ядрами, нужно нагреть тяжелый  водород до температуры:

Итак, сталкиваться и  реагировать между собой могут  только ядра дейтерия, «нагретые» до температуры  свыше миллиарда Кельвинов. Вот  в этом-то и заключается довольно серьезное затруднение для подлинных героев науки — физиков, посвятивших свою жизнь труднейшей и величественнейшей из проблем — стремлению обеспечить энергией будущие поколения.

Быть может, тяжелую воду можно чем-нибудь заменить? Ничем. Тяжелая вода как источник тяжелого водорода для термоядерных реакций с целью получения энергии, по-видимому, незаменима. Это следует из того, что необходимая для начала реакции температура сильно возрастает по мере увеличения атомного номера элемента. В самом деле, попробуйте сама подсчитать, какой температуре будет соответствовать кинетическая энергия частиц, способных преодолеть электростатическое отталкивание ядер атомов бериллия или кремния. Часть дейтерия можно заменить на тритий, но этого изотопа в природе почти нет.

Неужели это все-таки возможно? Очень трудно, но возможно. Во-первых, природа и физика идут навстречу исследователям: чтобы началась реакция, не нужно, чтобы весь газ был нагрет до такой немыслимо чудовищной температуры. Достаточно, если отдельные атомы будут обладать в нем столь высокой энергией.

Во всяком газе при  любой температуре есть частицы  с разными скоростями, от очень  малых до очень больших. Благодаря  этому реакция между атомами  дейтерия будет идти с достаточной  скоростью даже и при температуре, в несколько раз меньшей, чем 109 К. Это намного облегчает задачу. Кроме того, существует так называемый туннельный эффект, благодаря которому всегда есть некоторая вероятность, что реакция между ядрами все же может произойти, даже если их кинетическая энергия будет несколько ниже, чем необходимо для преодоления электростатического отталкивания.

Поэтому для начала термоядерного  процесса между ядрами тяжелого водорода оказывается вполне достаточной  температура всего только в триста миллионов кельвинов! Если же вести реакцию между дейтерием и тритием, то будет достаточно и сорока миллионов кельвинов.

Как же это  будет сделано? Это уже сделано. Физики осуществили реакцию термоядерного взрыва, в которой температура, необходимая для начала ядерного синтеза более тяжелых элементов из легких ядер, достигается взрывом атомного заряда — запалом.

Но очень, очень много  осталось еще сделать. Ведь нужен  человечеству не взрыв, а управляемая  реакция — источник энергии для  промышленности, для транспорта, для  всего, что будет необходимо обществу будущего. Нужна термоядерная «топка» — топка с температурой в сотни миллионов кельвинов.

3.Свойства воды

Почему вода — вода? Этот вопрос совсем не так неразумен, как может показаться. В самом деле, разве вода — это только та бесцветная жидкость, что налита в стакан?

Океан, покрывающий почти  всю нашу планету, всю нашу чудесную Землю, в котором миллионы лет  назад зародилась жизнь, — это  вода. Тучи, облака, туманы, несущие  влагу всему живому на земной поверхности, — это ведь тоже вода.

Бескрайние ледяные пустыни полярных областей, снеговые покровы, застилающие почти половину планеты, — и это вода.

Прекрасно, невоспроизводимо бесконечное многообразие красок солнечного заката, его золотых и багряных переливов; торжественны и нежны  краски небосвода при восходе солнца. Эта обычная и всегда необыкновенная симфония цвета обязана рассеянию и поглощению солнечного спектра водяными парами в атмосфере.

Это великий художник природы — вода.

Горные цепи сложены  гигантскими толщами сотен различных  горных пород, и геологи знают, что большинство из них создано величайшим строителем природы — водой. Непрерывно изменяется облик Земли. На месте, где возвышались высочайшие горы, расстилаются бескрайние равнины, их создает великий преобразователь — вода.

Безгранично многообразие жизни. Она всюду на нашей планете. Но жизнь есть только там, где есть вода. Нет живого существа, если нет воды.

Почему же одно из бесчисленных химических соединений с простой  и ничем не примечательной формулой, состоящее из двух обычных для  мироздания химических элементов, молекула которого состоит всего из трех атомов, — простая окись водорода, самая обычная, всем известная вода занимает столь особое место в жизни природы? Чем объясняется такая исключительная роль воды?

Среди необозримого множества  веществ вода с ее физико-химическими свойствами занимает совершенно особое, исключительное место.

Почти все физико-химические свойства воды исключение в природе. Она действительно самое удивительное вещество на свете.

Информация о работе Удивительные свойства воды