Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 20:19, реферат
Разве в космосе вода есть? Да, оказывается, вода есть в космическом пространстве. Десять лет назад астрофизики с помощью радиотелескопа обнаружили идущие к нам из космоса странные короткие радиоволны
— длиной 1,35 см. Оказалось, что это излучение исходит от загадочных гигантских облаков, расположенных в нашей Галактике в созвездии Ориона, Кассиопеи и в некоторых других созвездиях.
Теоретический расчет показал, что такое излучение принадлежит... воде. Молекулы водяного пара поглощают инфракрасную часть спектра света звезд и переходят в возбужденное состояние.
Вода удивительна не только многообразием изотопных форм молекулы и не только надеждами, которые связаны с ней как с неиссякаемым источником энергии будущего, но и своими самыми обычными свойствами.
А есть ли у воды родственники? Если считать родственными воде соединения, состоящие, как и вода, только из водорода и кислорода, то родственники у воды есть.
Правда, их очень немного — всего два. Одно из этих соединений давно известно всем. Это самая обыкновенная перекись водорода. Другое найдено совсем недавно.
Теоретики, рассчитывающие структуры молекул, нашли термодинамическим путем, что при достаточно низких температурах кроме молекул:
Н—О—Н и Н—О—О—Н
могут быть устойчивы еще молекулы Н—О—О—О—Н.
Других молекул водород и кислород образовать больше не могут, потому что молекулы с еще большим содержанием кислорода
Н—О—О—О—О—Н
должны быть нестабильными даже при очень низких температурах.
Другая группа ученых, не приняв во внимание предсказания теории, пыталась на опыте доказать невозможность существования молекул Н2О3. Они хотели опровергнуть результаты всех предшествующих попыток получить это соединение; и... сами открыли трехокись водорода. Молекула этого нового соединения водорода с кислородом построена в виде зигзагообразной цепочки:
Оно устойчиво только при температурах намного ниже 0°С. При более высокой температуре разлагается на воду и кислород. Получается в результате реакция между водородом и кислородом в тлеющем электрическом разряде при низких температурах.
Таким образом, открытие трехокиси водорода еще раз подтвердило, что теоретические расчеты вполне заслуживают доверия. Больше родственников у воды как будто бы нет.
Как построена молекула воды? Как построена одна молекула воды, теперь известно очень точно. Она построена вот так.
Хорошо изучено и измерено взаимное расположение ядер атомов водорода и кислорода и расстояние между ними. Оказалось, что молекула воды нелинейна. Вместе с электронными оболочками атомов молекулу воды, если на нее взглянуть «сбоку», можно было бы изобразить вот так.
А если взглянуть «сверху» — со стороны атома кислорода, то так (3): т.е. геометрически взаимное расположение зарядов в молекуле можно изобразить как простой тетраэдр.
Все молекулы воды с любым изотопным составом построены совершенно одинаково.
Сколько молекул воды в океане? Одна. И этот ответ не совсем шутка. Конечно, каждый может, посмотрев в справочник и узнав, сколько в Мировом океане воды, легко сосчитать, сколько всего в нем содержится молекул Н2О. Но такой ответ будет не вполне верен. Вода — вещество особенное. Благодаря своеобразному строению отдельные молекулы взаимодействуют между собой. Возникает особая химическая связь вследствие того, что каждый из атомов водорода одной молекулы оттягивает к себе электроны атомов кислорода в соседних молекулах. За счет такой водородной связи каждая молекула воды оказывается довольно прочно связанной с четырьмя другими соседними. Правда, эта схема чересчур упрощена. Представим себе несколько более верную картину. Для этого нужно учесть, что плоскость, в которой расположены водородные связи, в молекуле воды направлена перпендикулярно к плоскости расположения водородных атомов.
Все отдельные молекулы Н2О в воде оказываются связанными в единую сплошную пространственную сетку — в одну гигантскую молекулу. Поэтому вполне оправдано утверждение некоторых ученых физико-химиков, что весь океан — это одна молекула. Но не следует понимать это утверждение слишком буквально. Хотя все молекулы воды в воде и связываются между собой водородными связями, они в то же время находятся в очень сложном подвижном равновесии, сохраняя индивидуальные свойства и единичных молекул и образуя сложные агрегаты.
Подобное представление приложимо не только к воде: кусок алмаза тоже одна молекула.
Как построена молекула льда? Никаких особых молекул льда нет. Молекулы воды благодаря своему замечательному строению соединены друг с другом так, что каждая из них связана и окружена четырьмя другими молекулами. Это приводит к возникновению очень рыхлой структуры льда, в которой остается очень много свободного объема. Правильное кристаллическое строение льда выражается в изумительном изяществе снежинок и в красоте морозных узоров на замерзших оконных стеклах.
А что такое снежинки? Сростки ледяных кристалликов, образовавшиеся при конденсации водяного пара в верхних слоях атмосферы, где очень низкая температура.
Правильное кристаллическое
строение льда
выражается в изумительном изяществе
снежинок
Почему же они такие красивые? В кристаллической решетке льда есть плоскости, в которых атомы кислорода расположены так, что образуют правильные шестиугольники, как это видно на рисунке. Наверное, с этим и связана чаще всего встречающаяся шестилучевая форма изящных звездочек-снежинок.
Изумительная красота и бесконечное разнообразие форм снежинок вдохновили многих ученых на долголетние исследования этой удивительной загадки природы.
Были получены десятки тысяч фотографий снежинок в самых разнообразных условиях: и высоко в облаках, и у земли, и на Крайнем Севере, и на юге — всюду, где только может идти снег.
Взаимное притяжение ведет к тому, что средний размер сложной молекулы воды в жидкой воде значительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обусловливает ее необычайные физико-химические свойства.
Какова должна быть плотность воды? Правда, очень странный вопрос? Вспомните, как была установлена единица массы — один грамм. Это масса одного кубического сантиметра воды. Значит, не может быть никакого сомнения в том, что плотность воды должна быть только такой, какая она есть. Можно ли в этом сомневаться? Можно. Теоретики подсчитали, что если бы вода не сохраняла рыхлую льдоподобную структуру в жидком состоянии и ее молекулы были бы упакованы плотно, то и плотность воды была бы гораздо выше. При 25°С она была бы равна не 1,0, а 1,8 г/см3.
При какой температуре вода должна кипеть? Этот вопрос тоже, конечно, странен. Ведь вода кипит при ста градусах. Это знает каждый. Больше того, всем известно, что именно температура кипения воды при нормальном атмосферном давлении и выбрана в качестве одной из опорных точек температурной шкалы, условно обозначенной 100°С.
Попробуйте представить себе, что наша вода потеряла вдруг способность образовывать сложные, ассоциированные молекулы. Тогда она, вероятно, должна была бы кипеть при той же температуре, какая ей положена в соответствии с периодическим законом Менделеева. Что бы тогда стало на нашей Земле? Океаны внезапно закипели бы. На Земле не осталось бы ни одной капли, а на небе никогда не смогло бы появиться ни одного облачка... Ведь в атмосфере земного шара температура нигде не падает ниже –80—90°С.
При какой температуре вода замерзает? Не правда ли, вопрос не менее странен, чем предыдущие? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом случае можно спросить: при какой температуре вода должна замерзать в соответствии со своей химической природой? Оказывается, гидрид кислорода на основании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.
Попробуйте и на этот раз пофантазировать: вдруг исчезает ассоциация молекул воды... немедленно на всей нашей планете исчезают снега и льды.
Нельзя кататься на коньках, бегать на лыжах; впрочем, и некому тогда было бы кататься и бегать.
Полагается ли воде быть на Земле жидкой или твердой? Нет, не полагается. Из того, что температура плавления и кипения гидрида кислорода — его аномальные свойства, следует, что в условиях нашей Земли жидкое и твердое состояния его также аномалии. Нормальным должно было бы быть только газообразное состояние воды.
Невозможным жителям невозможного мира, в котором все свойства воды были бы нормальны, пришлось бы строить специальные машины, чтобы сжижать такую воду, подобно тому как это делаем мы, получая жидкий кислород.
Самые обычные свойства воды оказываются необычайными и удивительными, если как следует с ними познакомиться и хорошо в них разобраться.
Бывает ли жидкая вода твердой? Это вполне разумный вопрос. К сожалению, очень немногие знают, как на него правильно ответить. Ответ с первого взгляда несколько неожиданный, но с ним легче будет примириться, если сначала обсудить более простой и понятный обратный вопрос, на который, наверное, могут ответить все: когда твердая вода бывает жидкой?
Конечно, здесь не идет речь о том, что воду можно заморозить или растопить лед. Совсем нет — эти вопросы относятся к жидкой воде и твердому льду.
Всем известно, что лед при медленно действующих нагрузках течет. Ледники в горах текут подобно рекам, только очень и очень медленно, со скоростью всего в несколько метров в год. Значит, любой лед всегда в какой-то очень малой степени одновременно является жидким телом, если обладает свойством течь, подобно тому как течет любая жидкость. Под действием вековых нагрузок становятся пластичными и текут горные породы.
Если твердое тело в той или иной степени является жидким, то отсюда вполне разумно будет сделать вывод, что и обратное заключение тоже может быть справедливым и любая жидкость тоже должна в той или иной степени обладать признаками твердого тела.
Если лед при очень
медленной нагрузке течет, то вода при
очень быстром воздействии
Только не следует думать, что это интересное качество присуще одной воде. Оно свойственно и другим жидкостям. Даже газы, например воздух, тоже обладают некоторыми свойствами твердого тела, правда в ничтожной степени. «Твердость» воздуха проявляется только в очень узких щелях при быстрой деформации.
Так что, по существу, нет ничего удивительного в том, что жидкая вода одновременно немного твердая. Жители фантастического мира, которые были бы способны двигаться в тысячу раз быстрее, чем мы, могли бы преспокойно гулять по воде.
Сколько существует газообразных состояний воды? Только одно — пар. А пар тоже только один? Конечно нет, паров воды столько же, сколько существует различных вод. Водяные пары, различные по изотопному составу, обладают хотя и очень близкими, но все же различными свойствами: у них разная плотность, при одной и той же температуре они немного отличаются по упругости в насыщенном состоянии, у них чуть-чуть разные критические давления, разная скорость диффузии.
Сколько существует жидких состояний воды? На такой вопрос не так просто ответить. Конечно, тоже одно — привычная нам всем жидкая вода. Но вода в жидком состоянии обладает такими необыкновенными свойствами, что приходится задуматься: правилен ли такой простой, казалось бы, не вызывающий никаких сомнений ответ? Вода — единственное в мире вещество, которое после плавления сначала сжимается, а затем по мере повышения температуры начинает расширяться. Примерно при 4°С у воды наибольшая плотность. Эту редкостную аномалию в свойствах воды объясняют тем, что в действительности жидкая вода представляет собой сложный раствор совершенно необычайного состава: это раствор воды в воде.
При плавлении льда сначала образуются крупные сложные молекулы воды. Они сохраняют остатки рыхлой кристаллической структуры льда и растворены в обычной низкомолекулярной воде. Поэтому сначала плотность воды низкая, но с повышением температуры эти большие молекулы разрушаются, и поэтому плотность воды растет, пока не начнет преобладать обычное тепловое расширение, при котором плотность воды снова падает. Если это верно, то возможны несколько состояний воды, только их никто не умеет разделить. И пока неизвестно, удастся ли когда-нибудь это сделать. Такое необычайное свойство воды имеет огромное значение для жизни. В водоемах перед наступлением зимы постепенно охлаждающаяся вода опускается вниз, пока температура всего водоема не достигнет 4°С. При дальнейшем охлаждении более холодная вода остается сверху и всякое перемешивание прекращается. В результате создается не обычайное положение; тонкий слой холодной воды становится как бы «теплым одеялом» для всех обитателей подводного мира. При 4°С они чувствуют себя явно неплохо.
Что должно быть легче — вода или лед? Кто же этого не знает... Ведь лед плавает на воде. В океане плавают гигантские айсберги. Озера зимой покрыты плавающим сплошным слоем льда. Конечно, лед легче воды.
Но почему «конечно»?.. Разве это так ясно? Наоборот, объем всех твердых тел при плавлении увеличивается, и они тонут в своем собственном расплаве. А вот лед плавает в воде. Это свойство воды — аномалия в природе, исключение, и притом совершенно замечательное исключение.
Попробуем вообразить, как выглядел бы мир, если бы вода обладала нормальными свойствами и лед был бы, как и полагается любому нормальному веществу, плотнее жидкой воды.
Зимой намерзающий сверху более плотный лед тонул бы в воде, непрерывно опускаясь на дно водоема. Летом лед, защищенный толщей холодной воды, не мог бы растаять.
Постепенно все озера, пруды, реки, ручьи промерзли бы нацело, превратившись в гигантские ледяные глыбы. Наконец, промерзли бы моря, а за ними и океаны. Наш прекрасный цветущий зеленый мир стал бы сплошной ледяной пустыней, кое-где покрытой тонким слоем талой воды.
Сколько существует льдов? В природе на нашей Земле — один: обычный лед. Это самый прекрасный из всех минералов. Никакие алмазы не могут сравниться блеском и красотой со снежинками, искрящимися на солнце. Из этого голубовато-зеленого камня сложены на Земле не только горы и колоссальные ледники, им покрыты целые материки. Лед — горная порода с необычайными свойствами. Он твердый, но течет, как жидкость, и существуют огромные ледяные реки, медленно стекающие с высоких тор. Лед изменчив — он непрерывно исчезает и образуется вновь. Лед необычайно прочен и долговечен — десятки тысячелетий хранит он в себе без изменений тела мамонтов, случайно погибших в ледниковых трещинах.