Автор работы: Пользователь скрыл имя, 18 Января 2013 в 10:26, реферат
На стадии предварительного окисления озон используется для разрушения коллоидных частиц и макромолекул, а также для улучшения параметров коагуляции-флокуляции и, следовательно, процесса отстаивания. Осветленная вода обладает лучшими показателями по мутности и содержанию органики [общий органический углерод (ООУ), предшественники образования галоформ, вещества, придающие воде вкус и запах] [1]. Помимо окисления озон позволяет удалять водоросли, присутствующие в поверхностных водах. Он также окисляет железо и марганец в подземных водах с малым содержанием органических веществ. Применяемая на стадии предварительного окисления доза озона составляет примерно 1 мг/л.
Реферат………………………………………………………………3
Применение озона…………………………………………………..4
Стадия предварительного окисления…………………………….4
Стадия промежуточного или основного окисления……….……4
Стадия обеззараживания…………………………………………..5
Городские сточные воды…………………………………………..6
Дезодорирование и очистка газов………………………………..7
Плавательные бассейны……………………………………………7
Промышленные сточные воды……………………………………8
Применение в промышленности………………………………….9
Принцип генерации озона.………………………………………..9
Выбор реакторов озонирования…………………………………15
Кинетический аспект и гидравлика реактора………………….15
Критерии выбора реакторов озонирования…………………….16
Реакторы озонирования…………………………………………..17
Барботажная колонна и камера озонирования,
оборудованные пористыми диффузорами…………………………...17
Реактор с турбиной или радиальным диффузором……………18
U – образный реактор...............................................................19
Насадочная колонна………………………………………………20
Статический смеситель…………………………………………...20
Список использованной литературы……………………………24
Критерий Хатта (Hatta) – безразмерное число (На), позволяет охарактеризовать режим протекания реакции окисления и таким образом выбрать реактор для контакта газ-жидкость в соответствии с определяющей характеристикой [2], как показано в табл.4. Например:
Для необратимой реакции второго по
— диффузионная подвижность озона выражена в м2/с; k — в (моль/л)-1/с;
[М] — концентрация соединения
kL
— коэффициент переноса вещества со стороны жидкости, м/с.
Основные реакторы для контакта озон-вода представлены ниже в соответствии со случаями в табл.4 [2].
Барботажная колонна является наиболее классическим контактным реактором для озонирования, используемым в обработке воды. Данный тип реактора бывает двух видов: обычная барботажная колонна и камера озонирования с несколькими последовательными отсеками. Оба реактора схематично изображены на рис.2 [3].
Пористые диффузоры, установленные в основании барботажных колонн, формируют пузырьки диаметром около 3 мм, которые равномерно распределяются по всей площади поперечного сечения колонны. Газ и жидкость перемещаются в противоположных направлениях, при этом вода вводится в головную часть колонны. Противоток может также создаваться с помощью перегородок в каждом отсеке камеры озонирования. В реакторах этого типа уровень воды над диффузорами — 5-7 м. Число отсеков (обычно 2 или 3) определяется скоростью химической реакции и распределением расхода озонсодержащего газа в зависимости от протекания реакции [2].
Реактор с перемешиванием турбиной или радиальным диффузором позволяет эффективно смешать воду и озон в зоне контакта и обеспечить дисперсию газа по всей жидкой массе [2]. Смешивание может производиться с помощью [2]:
U-образный реактор представляет собой две вертикальные концентрические трубы, сообщающиеся в нижней части (рис.5). С помощью высокоскоростного насоса озонсодержащий газ подается со скоростью около 1,7 м/с и распространяется в нисходящем потоке обрабатываемой воды, находящейся в центральной трубе. Максимально допустимое соотношение расхода газа и жидкости составляет 0,17. 8 центральной трубе под воздействием скорости воды и роста давления образуются пузырьки малого размера. Сформированная эмульсия поступает восходящим потоком в кольцевое пространство реактора. Гидростатическое давление и продолжительность пребывания пузырьков газа в воде оказываются значительными, поскольку высота слоя воды обычно составляет 20 м. В результате облегчается процесс переноса озона в воду [2].
В насадочной колонне подлежащая обработке вода подается противотоком газу, насыщенному озоном (рис.6). Поступая сверху, она течет вниз под действием силы тяжести и распределяется в виде тонкой пленки и капель по поверхности насадки. Смачивание элементов насадки способствует увеличению поверхности контакта газовой и жидкой фаз [2].
Насадка может быть засыпана в колонну произвольно либо уложена в определенном порядке. Она может быть из нержавеющей стали и керамики, должна обладать как можно большей удельной поверхностью и низким гидравлическим сопротивлением [2].
Статический смеситель представляет собой трубу, в которой установлены неподвижные элементы, позволяющие смешивать фазы благодаря последовательным разделениям потока. Такой смеситель монтируется в трубопровод; вода в него подается насосом и проходит со скоростью 0,5-1,7 м/с, а озон вводится в воду через специальные сопла, расположенные до зоны смешения. В реакторе образуются пузырьки газа диаметром порядка 1мм, способствующие формированию значительной поверхности контакта фаз. Важнейшей характеристикой статического реактора является потеря напора, определяющая рассеивание энергии и размер пузырьков. Потеря напора зависит от расходов потоков, типа и количества элементов смесителя. Она может варьироваться в пределах 0,05-0,30 бар на погонный метр статического смесителя. Смеситель данного типа используется для ввода в головную часть контактной камеры аналогично гидроэжектору, а также для переноса озона в жидкую фазу. В классический вариант установки озонирования входит первичный смеситель для диспергирования газа, установленный на параллельной обводной линии, и основной статический смеситель, в котором осуществляется процесс переноса озона (рис.7). В зависимости от допускаемой потери напора первичный смеситель может быть заменен на гидроэжектор. Обычно такая установка озонирования дополняется на выходе дегазационной колонной для разделения фаз [2].
Характеристики основных описанных выше реакторов озонирования сравниваются в табл.5.
На выбор реактора в каждом конкретном случае применения влияют следующие определяющие процесс факторы [2]:
Таблица 5. Сравнение характеристик основных реакторов озонирования
Тип реактора |
Диспергируемая фаза |
kL а, с-1 |
Потребляемая мощность, кВт/м3 объема реактора | |
Барботажная колонна с пористыми диффузорами |
Газ |
0,0001-0,1 |
< 0,2 |
0,01-1 |
Реактор с турбиной или радиальным диффузором |
Газ |
0,01-0,2 |
< 0,1 |
0,5-4 |
Насадочная колонна |
Жидкость |
0,005-0,02 |
> 0,3 |
0,01-0,2 |
Статический смеситель |
Газ |
0,1-10 |
0,5 |
10-200 |
— безразмерный параметр, который характеризует удерживание газа в реакторе и рассчитывается как отношение объема, занимаемого газом в реакторе озонирования, к общему объему этого реактора.
Таблица 6. Практические аспекты выбора реактора озонирования
Тип реактора |
Преимущества |
Недостатки |
Область применения |
Барботажная колонна с пористыми диффузорами |
Относительно мягкая работа. Низкая стоимость эксплуатации |
Сложная конфигурация гидродинамических течений. Большая высота жидкости. Возможна кольматация пор |
Небольшие дозы озона. Медленная реакция. Питьевая вода |
Реактор с турбиной или радиальным диффузором |
Хороший контакт озона и воды за счет лучшего перемешивания. Гибкость относительно изменения расхода жидкости |
Потребление энергии. Обслуживание механического оборудования |
Высокие дозы озона. Реакция средней скорости. Питьевая и сточная вода |
U-образный реактор |
Хороший перенос озона в воду благодаря гидродинамическим условиям. Малая производственная площадь |
Расходы на строительство вертикальной шахты. Малые возможности в отношении изменения расхода жидкости |
Быстрая реакция. Питьевая вода |
Насадочная колонна |
Хороший перенос озона в воду за счет поршневого потока. Низкая стоимость эксплуатации |
Возможно засорение насадок |
Быстрая реакция. Промывка газа. Получение озонированной воды |
Статический смеситель |
Хороший перенос озона и воды за счет лучшего перемешивания. Низкая стоимость эксплуатации. Небольшие размеры установки |
Потребление энергии. Очень короткое время контакта. Возможна кольматация |
Очень быстрая реакция. Система диспергирования. Питьевая и сточная вода |