Автор работы: Пользователь скрыл имя, 21 Декабря 2012 в 07:44, курсовая работа
В отличие от других видов и способов математического моделирования с применением ЭВМ имитационное моделирование имеет свою специфику: запуск в компьютере взаимодействующих вычислительных процессов, которые являются по своим временным параметрам – с точностью до масштабов времени и пространства – аналогами исследуемых процессов.
ВВЕДЕНИЕ. 2
1. ОСНОВНЫЕ ОБЪЕКТЫ МОДЕЛИРУЮЩЕЙ ОБЪЕКТНО-ОРИЕНТИРОВАННОЙ ИНФОРМАЦИОННОЙ МОДЕЛИ 4
2. ВНУТРЕННЯЯ РЕАЛИЗАЦИЯ МОДЕЛИ 8
2.1 ОСНОВНЫЕ ПРОЦЕССЫ И ДЕЙСТВИЯ УЗЛОВ МОДЕЛИ 10
2.2 МОДЕЛИРОВАНИЕ РАБОТЫ С МАТЕРИАЛЬНЫМИ РЕСУРСАМИ. 14
2.3 ИМИТАЦИЯ ИНФОРМАЦИОННЫХ РЕСУРСОВ. 17
2.3.1 Логика моделирования 18
2.4 ДЕНЕЖНЫЕ РЕСУРСЫ. 21
3. МОДЕЛИРОВАНИЕ ПРОСТРАНСТВЕННОЙ ДИНАМИКИ 23
ПРИМЕР: МОДЕЛЬ ДВИЖЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА 23
ЗАКЛЮЧЕНИЕ. 25
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ. 26
Содержание:
Реферат
Курсовая работа состоит из 28 стр
Количество рисунков – 8
Ключевые слова:
Имитационное моделирование, анализ, генератор, очередь, процесс, ресурс, узел, модель.
Имитационное моделирование
В отличие от других видов и способов математического моделирования с применением ЭВМ имитационное моделирование имеет свою специфику: запуск в компьютере взаимодействующих вычислительных процессов, которые являются по своим временным параметрам – с точностью до масштабов времени и пространства – аналогами исследуемых процессов.
Имитационное моделирование
1. Структурный анализ процессов. Проводится формализация структуры сложного реального процесса путем разложения его на подпроцессы, выполняющие определенные функции и имеющие взаимные функциональные связи согласно легенде, разработанной рабочей экспертной группой. Выявленные подпроцессы, в свою очередь, могут разделяться на другие функциональные подпроцессы. Структура общего моделируемого процесса может быть представлена в виде графа, имеющего иерархическую многослойную структуру, в результате появляется формализованное изображение имитационной модели в графическом виде
2. Формализованное описание модели. Графическое изображение имитационной модели, функции, выполняемые каждым подпроцессом, условия взаимодействия всех подпроцессов и особенности поведения моделируемого процесса. Для этого существуют различные способы:
3. Построение модели. Обычно это трансляция и редактирование связей (сборка модели), верификация параметров.
Верификация параметров модели выполняется в соответствии с легендой, на основании которой построена модель, с помощью специально выбранных тестовых примеров.
4. Проведение экстремального эксперимента для оптимизации определенных параметров реального процесса.
Концепция имитационного моделирования требует предварительного знакомства читателя с методом Монте-Карло, с методологией проведения проверок статистических гипотез, с устройством программных датчиков случайных (псевдослучайных) величин и с особенностями законов распределения случайных величин при моделировании экономических процессов, которые не рассматриваются в типовых программах дисциплины «Теория вероятностей».
Кроме того, необходимо рассмотреть специальные стохастические сетевые модели, которые дают представление о временных диаграммах специальных имитационных процессов при выполнении программной модели.
Моделирующая система
Такая система позволяет передавать результаты моделирования, используемые для принятия управленческих решений, из модели в базы данных экономической информационной системы (например, через интерфейс ODBC - Open Data Base Connectivity, если моделирование проводится в среде Windows) либо «подкачивать» актуализируемые во времени параметры в модель из баз данных.
Существуют шесть основных понятий, на которых базируется концепция моделирующей системы.
1. Граф модели. Все процессы, независимо от количества уровней структурного анализа, объединяются в виде направленного графа. Пример изображения модели в виде многослойного иерархического графа, полученного при структурном анализе процесса, показан на рис. 1.
Рисунок 1 - Многослойный граф
2. Транзакт - это формальный запрос на какое-либо обслуживание. Транзакт в отличие от обычных заявок, которые рассматриваются при анализе моделей массового обслуживания, имеет набор динамически изменяющихся особых свойств и параметров. Пути миграции транзактов по графу стохастической сети определяются логикой функционирования компонентов модели в узлах сети.
Транзакт является динамической единицей любой модели, работающей под управлением имитатора.
Транзакт может выполнять следующие действия:
Примеры транзактов:
3. Узлы графа сети представляют собой центры обслуживания транзактов. В узлах транзакты могут задерживаться, обслуживаться, порождать семейства новых транзактов, уничтожать другие транзакты. С точки зрения вычислительных процессов в каждом узле порождается независимый процесс. Вычислительные процессы выполняются параллельно и координируют друг друга. Они реализуются в едином модельном времени, в одном пространстве, учитывают временную, пространственную и финансовую динамику.
Нумерация и присвоение имен узлам стохастической сети производится разработчиком модели. Следует учесть, что транзакт всегда принадлежит одному из узлов графа и независимо от этого относится к определенной точке пространства или местности, координаты которой могут изменяться.
Примеры узлов:
4. Событием называется факт выхода из узла одного транзакта. События всегда происходят в определенные моменты времени. Они могут быть связаны и с точкой пространства. Интервалы между двумя соседними событиями в модели - это, как правило, случайные величины. Разработчик модели практически не может управлять событиями.
5. Ресурс независимо от его природы в процессе моделирования может характеризоваться тремя общими параметрами: мощностью, остатком и дефицитом. Мощность ресурса - это максимальное число ресурсных единиц, которые можно использовать для различных целей. Остаток ресурса - число незанятых на данный момент единиц, которые можно использовать для удовлетворения транзактов. Дефицит ресурса - количество единиц ресурса в суммарном запросе транзактов, стоящих в очереди к данному ресурсу.
При решении задач динамического управления ресурсами можно выделить три основных типа: материальные, информационные и денежные ресурсы.
6. Пространство - географическое, декартова плоскость (можно ввести и другие). Узлы, транзакты и ресурсы могут быть привязаны к точкам пространства и мигрировать в нем.
Внутренняя реализация модели использует
объектно-ориентированный
В различных моделирующих системах имеются разные способы представления узлов графа. Это связано с отличительными свойствами таких систем. Например, в системе GPSS узлы называются блоками; причем количество различных типов блоков более сотни, что затрудняет восприятие графа модели. В системе Pilgrim имеется всего 17 типов узлов, которые функционально перекрывают все возможности блоков GPSS и предоставляют дополнительные средства, которые в GPSS отсутствуют:
Имеется система обозначений узлов, помогающая «читать» граф модели. Каждый узел имеет греческое обозначение, функциональное наименование, произвольный уникальный номер и произвольное название (например: наименование - serv, номер - 123, название - «Мастерская»). Пути транзактов обозначаются дугами - сплошными линиями со сплошной стрелкой на одном конце. Возможны информационные воздействия из одних узлов на другие; направления таких воздействий изображаются пунктирными линиями со сплошной стрелкой на одном конце. Если моделируются бухгалтерские проводки или перечисления денег, то пути денежных сумм со счета на счет показываются пунктирными линиями с штриховой стрелкой.
Рисунок 2 - Пример взаимодействия объектов имитационной модели
Рассмотрим основные процессы и действия, которые могут выполняться в различных узлах модели. Подробные описания таких действий на уровне языка моделирования и соответствующие правила будут приведены в последующих разделах.
Генератор транзактов (с бесконечной емкостью) имеет наименование ag. Узлы-генераторы создают новые транзакты и передают их в другие узлы модели. Параметры генератора в случае необходимости можно изменить посредством информационного воздействия из другого узла с помощью сигнала cheg (здесь и далее сигнал – это специальная функция, выполненная транзактом, находящимся в одном узле, в отношении другого узла).
Очередь (с относительными приоритетами или без приоритетов) имеет наименование queue. Если приоритеты не учитываются, то транзакты упорядочиваются в очереди в порядке поступления. Когда приоритеты учитываются, транзакт попадает не в «хвост» очереди, а в конец своей приоритетной группы.
Узел обслуживания с многими параллельными каналами имеет наименование serv. Обслуживание может быть в порядке поступления транзакта в освободившийся канал либо по правилу абсолютных приоритетов.
Терминатор, убирающий транзакты из модели, имеет наименование term. Транзакт, поступающий в терминатор, уничтожается. В терминаторе фиксируется время жизни транзакта.
Управляемый генератор (размножитель) транзактов имеет наименование creat. Он позволяет создавать новые семейства транзактов. Дело в том, что транзакты, создаваемые обычными генераторами ag, принадлежат семейству с номером 0. Если возникает необходимость создать новое семейство с ненулевым номером, то соответствующее требование содержится в порождающем транзакте, поступающем на вход creat
Управляемый терминатор транзактов имеет наименование delet. Иногда в модели возникает необходимость уничтожить (поглотить) заданное число транзактов, принадлежащих конкретному семейству.
Клапан, перекрывающий путь транзактам, имеет наименование key. Если на клапан воздействовать сигналом hold из какого-либо узла, то клапан перекрывается и транзакты не могут через него проходить. Сигнал rels из другого узла открывает клапан.
Очередь с пространственно-зависимыми приоритетами имеет наименование dynam. Транзакты, попадающие в такую очередь, привязаны к точкам пространства. Очередь обслуживается специальным узлом ргос, работающим в режиме пространственных перемещений. Смысл обслуживания транзактов заключается в том, чтобы посетить все точки пространства, с которыми связаны транзакты. При поступлении каждого нового транзакта, если он не единственный в очереди, происходит переупорядочение очереди таким образом, чтобы суммарный путь посещения точек был минимальным. Не следует считать, что при этом решается задача коммивояжера: для решения такой задачи в нулевой момент времени имеется вся информация о точках пространства. В данном же случае информация о новых точках поступает во время движения, когда некоторые точки уже посещены. Рассмотренное правило работы узла dynam в литературе называется «алгоритмом скорой помощи».
Управляемый процесс (непрерывный или пространственный) имеет наименование ргос. Этот узел работает в трех взаимно исключающих режимах:
В первом режиме после входа транзакта в узел запускается непрерывная модель, являющаяся функцией на языке С++, имеющая параметр «время». Такой моделью могут быть математическая формула или разностное уравнение, или другое.
Второй режим отличается от предыдущего только тем, что непрерывные процессы в узле не моделируются, так как они не нужны для моделирования доступа к информационным ресурсам.