Информатика практика

Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 21:37, аттестационная работа

Описание работы

Сигнал— материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Файлы: 1 файл

отчет по практике.doc

— 258.00 Кб (Скачать файл)

Вопрос 1.

 

Сигнал— материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

По физической природе  носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

По способу задания  сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

  • непрерывные (аналоговые), описываемые непрерывной функцией;
  • дискретные, описываемые функцией отсчётов, взятых в определённые моменты времени;
  • квантованные по уровню;
  • дискретные сигналы, квантованные по уровню (цифровые).

 

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени ti (где i — индекс). Обычно промежутки времени между последовательными отсчётами (Δti = ti − ti−1) постоянны; в таком случае, Δt называется интервалом дискретизации. Сами же значения сигнала x(t) в моменты измерения, то есть xi = x(ti), называются отсчётами.

Квантованный сигнал

При квантовании вся  область значений сигнала разбивается  на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N−1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал

Для того, чтобы представить  аналоговый сигнал последовательностью  чисел конечной разрядности, его  следует сначала превратить в  дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине, называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Последовательность таких чисел и будет являться цифровым сигналом.

Кодирование сигнала – это его представление в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для  отображения, - кодовым алфавитом, или алфавитом для кодирования. При этом кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации. Аналогично для построения кода используются как отдельные символы кодового алфавита, так и их комбинации. Например, дана таблица соответствия между натуральными числами трех систем счисления, аналогичная рассмотренной ранее. Эту таблицу можно рассматривать как некоторое правило, описывающее отображение набора знаков десятичной системы счисления в двоичную и шестнадцатеричную. Тогда исходный алфавит - десятичные цифры от 0 до 9, а кодовые алфавиты - это 0 и 1 для двоичной системы; цифры от 0 до 9 и символы {A, B, C, D, E, F} - для шестнадцатеричной.

Кодовой комбинацией, или, короче, кодом называется совокупность символов кодового алфавита, применяемых для кодирования одного символа (или одной комбинации символов) исходного алфавита. При этом кодовая комбинация может содержать один символ кодового алфавита. Исходным символом называется символ (или комбинация символов) исходного алфавита, которому соответствует кодовая комбинация. Например, поскольку 8 = 10002 и 8 является исходным символом, 1000 - это кодовая комбинация, или код, для числа 8. В то же время 8 - это исходный символ. Совокупность кодовых комбинаций называется кодом. Взаимосвязь символов (или комбинаций символов, если кодируются не отдельные символы) исходного алфавита с их кодовыми комбинациями составляет таблицу соответствия (или таблицу кодов).

Следует отметить, что понятие “код” омонимично: оно может употребляться и в смысле кодовой комбинации, и в приведенном выше смысле. Аналогично, понятие “кодовая комбинация” синонимично понятию “код”.

Обратная процедура получения исходных символов по кодам символов называется декодированием. Очевидно, для выполнения правильного декодирования код должен быть однозначным, т.е. одному исходному символу должен соответствовать точно один код и наоборот.

В зависимости от целей кодирования, различают следующие его виды:

  1. кодирование по образцу - используется всякий раз при вводе информации в компьютер для ее внутреннего представления;
  2. криптографическое кодирование, или шифрование, – используется, когда нужно защитить информацию от несанкционированного доступа;
  3. эффективное, или оптимальное, кодирование – используется для устранения избыточности информации, т.е. снижения ее объема, например, в архиваторах;
  4. помехозащитное, или помехоустойчивое, кодирование – используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха, например, при передаче информации по каналам связи.

Квантование— в информатике разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов. Существует также векторное квантование — разбиение пространства возможных значений векторной величины на конечное число областей. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.

Не следует путать квантование с дискретизацией (и, соответственно, шаг квантования с частотой дискретизации). При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), таким образом, дискретизация разбивает сигнал по временной составляющей (на графике — по горизонтали). Квантование же приводит сигнал к заданным значениям, то есть, разбивает по уровню сигнала (на графике — по вертикали). Сигнал, к которому применены дискретизация и квантование, называется цифровым.

Квантование часто используется при обработке сигналов, в том числе при сжатии звука и изображений.

При оцифровке сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество бит, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае однородного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ 6 дБ).

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков. 
Для начала проведём границу между числом и цифрой:

  • Число — это некоторая абстрактная сущность для описания количества.
  • Цифры — это знаки, используемые для записи чисел.

Цифры бывают разные: самыми распространёнными являются арабские цифры, представляемые известными нам  знаками от нуля (0) до девяти (9); менее  распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак запомним:

  • число — это абстрактная мера количества;
  • цифра — это знак для записи числа.

Поскольку чисел гораздо  больше чем цифр, то для записи числа  обычно используется набор (комбинация) цифр.

Только для небольшого количества чисел — для самых  малых по величине — бывает достаточно одной цифры.

Существует много способов записи чисел с помощью цифр. Каждый такой способ называется системой счисления.

Величина числа может  зависеть от порядка цифр в записи, а может и не зависеть.

Это свойство определяется системой счисления и служит основанием для простейшей классификации таких систем.

Итак, указанное основание  позволяет все системы счисления разделить на три класса (группы):

  • позиционные;
  • непозиционные;
  • смешанные.

 

Вопрос 2.

Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – проц, камень, кристалл и др.) – основная составная часть любого компьютера, его мозг и сердце. Именно это устройство осуществляет обработку всей информации, выполняет команды пользователя и руководит другими устройствами, выполняя в системе роль своеобразной мини атс.

Процессор в современном  понимании появился далеко не сразу  и является изделием, прошедшим за относительно короткий срок сложную  эволюцию.

На протяжении уже  многих лет основными производителями  процессоров являются американские компании Intel и AMD (Advanced Micro Devices). Есть, конечно, и другие достойные производители, но до уровня указанных лидеров им очень далеко. Intel и AMD постоянно борются за первенство в изготовлении все более производительных и доступных процессоров, вкладывая в их разработку огромные средства и много сил. Указанная конкурентная борьба - важный фактор, содействующий быстрому развитию этой отрасли.

Внешне центральный процессор не представляет собой ничего выдающегося – небольшая плата (где-то 5 х 5 см.) с множеством контактов с одной стороны и плоской металлической коробочкой с другой. Но на самом деле внутри этой коробочки хранится очень сложная полупроводниковая структура из миллионов или даже миллиардов транзисторов.

Системная шина — это «паутина», соединяющая между собой все устройства и отвечающая за передачу информации между ними. Расположена она на материнской плате и внешне не видна. Системная шина — это набор проводников (металлизированных дорожек на материнской плате), по которым передается информация в виде электрических сигналов.

Чем выше тактовая частота системной  шины, тем быстрее будет осуществляться передача информации между устройствами и, как следствие, увеличится общая производительность компьютера, т. е. повысится скорость компьютера.

В персональных компьютерах используются системные шины стандартов ISA, EISA, VESA, VLB и PCI. ISA, EISA, VESA и VLB, которые в настоящее время являются устаревшими и не выпускаются на современных материнских платах. Сегодня самой распространенной является шина PCI.

Существуют и специализированные шины, например внутренние шины процессоров или шина для подключения видеоадаптеров — AGP.

Все стандарты различаются как  по числу и использованию сигналов, так и по протоколам их обслуживания.

Шина входит в состав материнской  платы, на которой располагаются  ее проводники и разъемы (слоты) для подключения плат адаптеров устройств (видеокарты, звуковые карты, внутренние модемы, накопители информации, устройства ввода/вывода и т. д.) и расширений базовой конфигурации (дополнительные пустующие разъемы).

Существуют 16- и 32-разрядные, высокопроизводительные (VESA, VLB, AGP и PCI с тактовой частотой более 16 МГц) и низкопроизводительные (ISA и EISA с тактовой частотой 8 и 16 МГц) системные шины. Также шины, разработанные по современным стандартам (VESA, VLB и PCI), допускают подключение нескольких одинаковых устройств, например нескольких жестких дисков, а шина PCI обеспечивает самоконфигурируемость периферийного (дополнительного) оборудования — поддержку стандарта Plug and Play, исключающего ручную конфигурацию аппаратных параметров периферийного оборудования при его изменении или наращивании. Операционная система, поддерживающая этот стандарт, сама настраивает оборудование, подключенное по шине PCI, без вмешательства пользователя.

Имеются как 64-разрядные расширения шины PCI, так и 32-разрядные, работающие на частоте 66 МГц.

Вопрос 3.

Систе́мное програ́ммное обеспе́чение — комплекс программ, которые обеспечивают управление компонентами компьютерной системы, такими как процессор, оперативная память, устройства ввода-вывода, сетевое оборудование, выступая как «межслойный интерфейс», с одной стороны которого аппаратура, а с другой — приложения пользователя. В отличие от прикладного программного обеспечения, системное не решает конкретные практические задачи, а лишь обеспечивает работу других программ, предоставляя им сервисные функции, абстрагирующие детали аппаратной и микропрограммной реализации вычислительной системы, управляет аппаратными ресурсами вычислительной системы.

Основные функции (простейшие операционные системы):

  • Загрузка приложений в оперативную память и их выполнение.
  • Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).
  • Управление оперативной памятью (распределение между процессами, виртуальная память).
  • Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, компакт-диск и т. д.), организованным в той или иной файловой системе.
  • Пользовательский интерфейс.
  • Сетевые операции, поддержка стека протоколов.

Программное обеспечение  принято по назначению подразделять на системное, прикладное и инструментальное, а по способу распространения и использования на несвободное (закрытое), открытое и свободное.

Информация о работе Информатика практика