Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 16:19, курсовая работа
Целью данной курсовой работы является – подробно изучить экспертные системы как прикладную область искусственного интеллекта.
Для достижения данной цели в полной мере потребовалось решить следующие задачи:
- рассмотреть историю развития искусственного интеллекта;
- определить дальнейшие тенденции развития искусственного интеллекта;
- рассмотреть основные понятия и компоненты экспертных систем;
- выявить их достоинства и недостатки;
- изучить этапы разработки и области применения;
- выявить отличия экспертных систем от других программ.
Такой взгляд на искусственный интеллект,
кибернетику и информатику
История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений – теории алгоритмов – и были созданы первые компьютеры.
Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившей название теста Тьюринга. Затем в Японии появилась значительная группа высококвалифицированных специалистов в области искусственного интеллекта, которая добилась существенных результатов в различных прикладных задачах. К середине 90-х годов японская ассоциация искусственного интеллекта насчитывает 40 тысяч человек. Начиная с середины 1980-х годов, повсеместно происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам. Издаются десятки журналов, ежегодно собираются международные и национальные конференции по различным направлениям искусственного интеллекта [7].
1.2 Определение искусственного интеллекта и его особенности
Искусственный интеллект – это
экспериментальная научная
Искусственный интеллект занимает исключительное положение. С чем же это связано? Часть функций программирования в настоящее время оказалось возможным передать машине. При этом общение с машиной происходит на языке, близком к разговорному. Для этого в ЭВМ закладывают огромную базу знаний, способы решения, процедуры синтеза, программы, а также средства общения, позволяющие пользователю легко общаться с ЭВМ. В связи с внедрением ЭВМ во все сферы человеческой жизни становится возможным переход к безбумажной технологии обработки информации. Если же раньше производство ориентировалось на обязательное участие человека, то в настоящее время находят применение безлюдные технологии, основанные на роботизации и автоматизации системы управления. Интеллектуальные системы в настоящее время начинают занимать ведущее положение в проектировании образцов изделий. Часть изделий невозможно спроектировать без их участия.
Системы, относящиеся к системам искусственного интеллекта в настоящее время:
- экспертные системы. Первые
системы, которые нашли
- системы естественно-языкового
общения (подразумевается
- системы речевого общения;
- системы обработки визуальной информации. Находят применение в обработке аэрокосмических снимков, данных, поступающих с датчиков;
- системы машинного перевода. Подразумеваются
естественные языки
В настоящее время происходит как
бы «связка» сознания человека с информационной
компьютерной средой, причем многие процессы
жизнедеятельности человека переносятся
в виртуальную информационную компьютерную
среду. Получившаяся в результате этого
система выигрывает за счет синергетического
умножения сильных качеств
Сегодня технологии искусственного интеллекта включают в себя множество различных подходов. Среди которых:
- нейронные сети, работающие на
принципах, схожих с работой
мозга. Они используются для
распознания речи и
- эволюционные алгоритмы,
- нечеткая логика, позволяющая
компьютеру работать с
По мере распространения компьютерных технологий, работа с информацией и компьютерными агентами станет занимать всё большую часть человеческой жизни. Искусственный интеллект-агенты будут помнить за человека, помогать ему в поиске и обработке информации. Подобное «усиление разума» — один из путей к сверхразуму. Развитие носимых и вживляемых компьютеров приведёт к тому, что большинство людей станет окруженным «экзокорой», сонмом компьютеров, по сути выполняющих часть мыслительной работы и хранящих часть памяти своего хозяина. Дополненная реальность будет стирать границы между внутренним миром (воображением, памятью) и миром реальным. Человек будет воспринимать реальность уже насыщенной дополнительной информацией — имена незнакомых людей, аргументы собеседника, сведённые в единую систему, справочная информация, любопытные идеи, подсказанные искусственным интеллектом. Дальнейшая миниатюризация микрочипов сделает возможной прямой интерфейс между мозгом и компьютером, обеспечивая примитивное считывание и запись мыслей. Появление совершенных нано технологий и создание субклеточных нано роботов сделает возможным считывание и запись информации на уровне отдельного нейрона. Это даст человеку полный контроль над собственным мозгом.
Параллельно
будет развиваться
К 2015 году многие люди будут постоянно общаться с искусственным интеллектом на работе. Искусственный интеллект будет обладать способностями, достаточными для письменного или устного общения с человеком на обычном языке, будет понимать смысл информации из баз данных о клиентах, корпоративных правил и т. п. Многие профессии в сфере услуг, должности клерков, продавцов, специалистов из центров поддержки, будут автоматизированы с помощью искусственного интеллекта.
Примерно к 2030 году компьютеры, достигнут вычислительной мощности, достаточной для полной симуляции мозга человека во всей его сложности. Это сделает практически возможной загрузку человеческого сознания, считанного нано роботами, в компьютер. Ещё более вероятно, что уже к 2020 году будут заложены теоретические основы создания чисто машинного разума. В любом случае, где-то между 2020-2035 компьютерный разум сравняется по силе с человеческим и вскоре превзойдёт его [3].
2 ЭКСПЕРТНЫЕ СИСТЕМЫ – ОСНОВНОЕ
НАПРАВЛЕНИЕ ИСКУССТВЕННОГО
2.1 Определение экспертных систем, достоинство и назначение
Экспертные системы - это яркое и быстро прогрессирующее направление в области искусственного интеллекта. Экспертная система - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. Экспертная система, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы экспертных систем, определённым образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы. Экспертные системы выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, экспертные системы решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путём привлечения эвристик, то есть правил, взятых «с потолка», что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.
Главное достоинство экспертных систем
- возможность накапливать
Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на экспертных системах, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов [4].
2.2 Классификация экспертных систем
Класс «экспертные системы» сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям.
Классификация по решаемой задаче:
- интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных;
- диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры («анатомии») диагностирующей системы;
- мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в I реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы – «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста;
- проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов - чертёж, пояснительная записка и так далее. Основные проблемы здесь - получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и, в ещё большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей экспертной системы: процесс вывода и процесс объяснения;
-прогнозирование.