Классификации и типы нейронных сетей

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 00:09, реферат

Описание работы

Нейронные сети позволяют реализовать любой требуемый для процесса нелинейный алгоритм управления при неполном, неточном описании объекта управления (или даже при отсутствии описания), создавать мягкую адаптацию, обеспечивающую устойчивость системе при нестабильности параметров.
ИНС могут применяться для различных задач: аппроксимация функций, идентификация, прогнозирование, управление, классификация образов, категоригизация, оптимизация.

Содержание работы

Введение
Понятие о нейронных сетях
2.1 Обучение нейронной сети
2.2 Методы ускорения обучения нейронной сети. Принцип достаточности
Классификация и виды нейронных сетей
3.1 Многослойные нейронные сети
Вывод
Список использованной литературы

Файлы: 1 файл

типы нейронных сетей.docx

— 100.31 Кб (Скачать файл)

    Предположим, дана некоторая задача классификации. Требуется решить ее, используя многослойную нейронную сеть, обучаемую с помощью алгоритма обратного распространения ошибки. Как правило, в процессе обучения нейронной сети для оценки погрешности обучения выделяют два вида ошибок: глобальные и локальные.

Формула для локальной  ошибки выглядит следующим образом:

где:

  • – элементарная ошибка -го нейрона выходного слоя нейронной сети;
  • –количество нейронов в выходном слое сети.

Формула для подсчета глобальной ошибки следующая:

где:

  • – локальная ошибка всей нейронной сети на -м обучающем наборе;
  • – число обучающих наборов.

     Идеальным считается такое обучение, после которого нейронная сеть полностью повторяет обучающую выборку. Такое обучение является трудозатратным, а в некоторых случаях и просто невозможным. Это вызвано тем, что различные классы в обучающей выборке могут иметь схожие объекты, и чем их будет больше, тем сложнее предстоит процесс обучения нейронной сети.

     Суть принципа достаточности заключается в отказе от стремления к идеалу при поиске решения задачи. Если этот принцип перенести на процесс обучения нейронной сети, то можно сказать, что 100% точность распознавания требуется далеко не во всех случаях. Для того чтобы объект распознавания был правильно определен в свой класс вполне достаточно, чтобы ошибка нейронной сети на конкретном обучающем наборе не превосходила некоторого . Если оценка качества обучения нейронной сети проходит с помощью глобальной ошибки, то вполне бывает достаточным достижение некоторого значения .

     Максимальное значение , при котором будет сохраняться заданная точность распознавания, зависит от характера обучающей выборки. В качестве параметров характеризующих обучающую выборку, рассмотрим ее полноту и противоречивость.

     Полнота обучающей выборки характеризует обеспеченность классов обучающими наборами. Считается, что для каждого класса количество обучающих наборов должно хотя бы в 3-5 раз превосходить количество признаков класса, используемое в этих наборах. Для расчета полноты обучающей выборки можно воспользоваться следующей формулой:

где:

  • – число классов, удовлетворяющих вышеописанному правилу;
  • – общее число классов.

Противоречивыми считаются  те обучающие наборы, в которых  содержатся объекты, определенные к  разным классам, но имеющие одинаковые классификационные признаки. Таким  образом, противоречивость всей обучающей выборки находиться по следующей формуле:

где:

  • – количество противоречивых наборов;
  • – общее количество наборов в обучающей выборке.

Таким образом, чем больше будут значения и , тем больше может быть величина , и тем быстрее может проходить обучение нейронной сети.

 

 

 

 

 

 

 

 

 

 

 

 

Классификация и  типы нейронных сетей

 

                              

Характер обучения

Классификация нейронных  сетей по характеру обучения делит  их на:

  • нейронные сети, использующие обучение с учителем;
  • нейронные сети, использующие обучение без учителя.

     Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

     Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

  • сети с фиксированными связями – весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;
  • сети с динамическими связями – для них в процессе обучения происходит настройка синаптических весов.

Тип входной информации

  • аналоговая – входная информация представлена в форме действительных чисел;
  • двоичная – вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

     Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

     Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989). Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.

     Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Типы нейронных  сетей

     С инженерной точки зрения нейронная сеть представляет собой сильно распараллеленную динамическую систему с топологией направленного графа, которая может выполнять переработку информации посредством изменения своего состояния в ответ на постоянный или импульсный входной сигнал.

     Конкретный вид выполняемого сетью преобразования информации обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, т. е. той или иной топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, наличием или отсутствием конкуренции, направлением и способами управления и синхронизации информационных потоков между нейронами и т. д. При этом следует отметить некоторые свойства НС:

  • возможности сети возрастают с увеличением числа слоев сети и количества связей между ними;
  • введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;
  • сложность алгоритмов функционирования сети (в том числе, например, введение нескольких типов синапсов – возбуждающих, тормозящих и др.) также способствует усилению мощи НС.

Так как проблема синтеза  НС сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев  оптимальный вариант получается на основе интуитивного подбора.

Выделяют несколько (обычно три) основных типов нейронных сетей, отличающихся структурой и назначением:

  • Иерархические сети. Информация в таких сетях передается в процессе последовательного перехода от одного уровня иерархии к другому. Нейроны образуют два характерных типа соединений — конвергентные, когда большое число нейронов одного уровня контактирует с меньшим числом нейронов следующего уровня, и дивергентные, в которых контакты устанавливаются со все большим числом нейронов последующих слоев иерархии.
  • Локальные сети, формируемые нейронами с ограниченными сферами влияния. Нейроны локальных сетей производят переработку информации в пределах одного уровня иерархии. При этом функционально локальная сеть представляет собой относительно изолированную тормозящую или возбуждающую структуру.
  • Важную роль также играют так называемые дивергентные сети с одним входом. Командный нейрон, находящийся в основании такой сети может оказывать влияние сразу на множество нейронов, и поэтому сети с одним входом выступают согласующим элементом в сложном сочетании нейросетевых систем всех типов.

В зависимости от используемой в НС выходной функции нейрона  различают бинарные и аналоговые сети. Первые из них оперируют с  двоичными сигналами, и выход  каждого нейрона может принимать  только два значения: логический ноль ("заторможенное" состояние) и  логическая единица ("возбужденное" состояние). В аналоговых сетях выходные значения нейронов способны принимать  непрерывные значения при замене ступенчатой (пороговой) функции сигмоидной.

 

Многослойные  нейронные сети

 

     Вероятно, архитектура многослойных нейронных сетей используется сейчас наиболее часто. Она была предложена еще в работах Розенблатта и подробно обсуждается почти во всех учебниках по нейронным сетям. Обычно сеть состоит из множества сенсорных элементов (входных узлов), которые образуют входной слой; одного или нескольких скрытых слоев вычислительных нейронов и одного выходного слоя нейронов.

      В литературе нет единообразия относительно того, как считать число слоев в многослойных нейронных сетях. Одни предлагают считать число слоев, включая несуммирующий входной слой, другие – считать, только слои, выполняющие суммирование. Мы предлагаем использовать последнее определение. Согласно этому определению, многослойная нейронная сеть на рисунке ниже рассматривается как двухслойная. Вход распределительного слоя считается нулевым слоем.

      Многослойная нейронная сеть может моделировать функцию практически любой степени сложности, причем число слоев и число элементов в каждом слое определяют сложность функции. Определение числа промежуточных слоев и числа элементов в них является важным вопросом при конструировании.

      Среди многослойных нейронных сетей можно выделить четыре наиболее значимых и важных класса нейронных сетей:

  • сети прямого распространения – все связи направлены строго от входных нейронов к выходным. Такие сети еще называют многослойным персептроном, по аналогии с обычным персептроном Розенблатта, в котором только один скрытый слой;
  • реккурентные нейронные сети или сети обратного распространения – сигнал в таких сетях с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя;
  • радиально базисные функции – вид многослойной нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы;
  • самоорганизующиеся карты или сеть Кохонена. Такой класс многослойных нейронных сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вывод

 

     После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно, действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.

Информация о работе Классификации и типы нейронных сетей