Моделирование процесса движения планет

Автор работы: Пользователь скрыл имя, 24 Марта 2014 в 21:47, курсовая работа

Описание работы

В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.

Содержание работы

Введение 3
1. Теоретическая часть 3
1.1. Классификационные признаки 3
1.2. Математическое моделирование 5
2. Среда разработки Stratum 2000 8
3. Выполнение курсовой работы в программной среде Stratum 9
3.1. Рисование модели 9
3.2. Построение модели 9
3.2.1. Математическое построение модели 9
3.2.2. Логическое построение модели 19
3.2.3. Реализация имитационной модели 20
Заключение 20
Список литературы 21

Файлы: 1 файл

Моделирование систем.docx

— 237.53 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

 



по дисциплине

«Моделирование систем» 
Тема: «Моделирование процесса движения планет»

 

 

 

Руководитель:

 

 

Студент

 

 

 

 

 

 

 

 

 

 

г. Иваново 2013 г.

 

Оглавление

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

Курсовая работа предназначена для практического усвоения студентами основных разделов дисциплин «Моделирование систем», закрепления знаний по математическим и программным средствам системного моделирования, развития практических навыков комплексного решения задач исследования и проектирования систем в среде Stratum 2000.

В результате выполнения курсовой работы должен быть смоделирован процесс движения Луны и Земли вокруг собственных осей, также вокруг Солнца.

Курсовая работа состоит из трех частей: теоретической части, описания программы и практической части, которая включает в себя математическое и логическое построение модели, а так же реализацию модели.

 

 

 

  1. Теоретическая часть

 

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

 

 

 

    1. Классификационные признаки

 

В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.

В зависимости от характера изучаемых процессов в системе все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно - непрерывные. Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций. Статическое моделирование служит для описания поведения объекта в какой - либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые существуют вне условий, возможных для их физического создания.

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте.

Аналоговое моделирование основывается на применении аналогий различных уровней.

Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных объектов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус - словарь, который очищен от неоднозначности, т.е.  в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.

 

 

 

 

 

 

 

 

 

 

    1. Математическое моделирование

 

Для исследования характеристик процесса функционирования любой системы математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы 
функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

б) численным, когда, не умея решать уравнений в общем виде стремятся 
получить числовые результаты при конкретных начальных данных;

в) качественным, когда, не имея решения в явном виде, можно найти 
некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели.

Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

Имитационное моделирование основано на воспроизведении с помощью ЭВМ развернутого  во  времени  процесса  функционирования  системы  с учетом взаимодействия с внешней средой. Основой всякой имитационной модели (ИМ) является:

  • разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;
  • выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;
  • построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;
  • выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).

Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы.

Основным преимуществом имитационного моделирования, по сравнению с аналитическим, является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования простых систем, а часто и единственный практически

доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования.

Метод имитационного моделирования позволяет решать задачи анализа больших систем, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы.

Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а так же может рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, которые фиксируются в некоторый момент времени. Наибольшие сложность и интерес с точки зрения верности получаемых результатов представляет физическое моделирование в реальном масштабе времени.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные),

цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимают модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между входами и выходами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

 

 

Выводы: в данном разделе были изложены основные понятия, связанные с моделированием систем, приведены классификационные признаки моделирования, а так же рассмотрено имитационное моделирование являющееся основой данного курсового проекта.

 

 

  1. Среда разработки Stratum 2000

 

Stratum 2000 создан для платформ Windows95/ 98/ NT. Интуитивно понятный интерфейс делает его легким для освоения и использования в технологиях имитационного и математического моделирования систем. Визуальные средства проектирования среды Stratum 2000 обеспечивают построение прототипа системы из объектов, соединяемых между собой информационными связями. Для их изображения используются статическая и анимационная графика. Поведение объектов описывается на простом математическом языке. Имеется богатый набор математических функций, средства решения линейных и нелинейных систем уравнений. Объекты могут иметь иерархию и сохраняются в библиотеках. Однажды созданные, объекты, могут независимо использоваться в других системах. Все это дает возможность пользователю выбрать наиболее удобный способ формального представления системы.

Информация о работе Моделирование процесса движения планет