Автор работы: Пользователь скрыл имя, 03 Апреля 2014 в 09:35, курсовая работа
Применение открытых информационных систем, рассчитанных на использование всего массива информации, доступной в данный момент обществу в определенной его сфере, позволяет усовершенствовать механизмы управления общественным устройством, способствует гуманизации и демократизации общества, повышает уровень благосостояния его членов. Процессы, происходящие в связи с информатизацией общества, способствуют не только ускорению научно—технического прогресса, интеллектуализации всех видов человеческой деятельности, но и созданию качественно новой информационной среды социума, обеспечивающей развитие творческого потенциала индивида.
Введение
Возможности средств новых информационных технологий
Понятие информационной технологии
Роль средств новых информационных технологий в образовании
Педагогические цели использования СНИТ
Развитие личности обучаемого, подготовка индивида к комфортной жизни в условиях информационного общества
Реализация социального заказа, обусловленного информатизацией современного общества
Интенсификация всех уровней учебно-воспитательного процесса
Направления внедрения СНИТ в образование
Базы данных
Реляционные базы данных.
Объектно-ориентированные базы данных.
Спорные моменты технологии.
Локальные сети
Глобальные сети
История Интернет и Всемирной Паутины
Доступ в Интернет
Доменные имена
Передача даных
Электронная почта
Конференции
Компьютерные вирусы
Поиск в Интернете
Основы поиска
Какой поисковый узел лучше?
Советы
Поисковые узлы
Литература
4) Объекта изучения (например, в рамках освоения курса информатики).
5) Средства информационно—
6) Средства коммуникаций (например,
на базе асинхронной
7) Средства автоматизации
8) Средства автоматизации процесс
9) Средства организации
Базы данных
Системы управления базами данных (СУБД, DBMS – Database Management System) на протяжении всего пути развития компьютерной техники совершенствовались, поддерживая все более сложные уровни абстрактных данных, заданных пользователем, и обеспечивая взаимодействие компонентов, распределенных в глобальных сетях и постепенно интегрирующихся с телекоммуникационными системами. История развития компьютерной техники – это история непрерывного движения от языка и уровня коммуникации машины к уровню пользователя. Если первые машины требовали от пользователя оформления того, что ему нужно (то есть написания программ), в машинных кодах, то языки программирования четвертого уровня (4GLs) позволяли конечным пользователям, не являющимся профессиональными программистами, получать доступ к информации без детального описания каждого шага, но только с встроенными предопределенными типами данных – например, таблицами.
Последним шагом в этом направлении стала объектно-ориентированная технология, радикально изменившая сферу разработки программного обеспечения уже в 1990-х годах. Объектно-ориентированный подход позволяет упаковывать данные и код для их обработки вместе. Таким образом, практически снимается ограничение на типы данных, позволяя работать на любом уровне абстракции.
Эволюция систем управления информацией шла параллельно этому прогрессу, начиная с низкоуровневых программ, которые, например, напрямую производили операции чтения и записи со всей памятью без ограничения доступа, лентой, цилиндрами и дорожками диска и более высокоуровневыми средствами – файловыми системами, которые оперировали с такими понятиями, как массивы, записи и индексы для повышения производительности. Базы данных в свою очередь начинали с модели записей и индексов (ISAM и др.), приобретая со временем способность восстановления после сбоев, проверки целостности данных и возможности работы нескольких пользователей одновременно. Эти ранние модели данных (CODASYL) относились скорее к уровню машинной ориентации. В дальнейшем реляционные базы данных, пришедшие на смену в 1980-х годах, приобрели механизм запросов, позволяющий пользователю указать требуемое, предоставив СУБД самой оптимальным образом найти результат, используя динамическую индексацию.
Обьектно-ориентированные СУБД (ООСУБД) стали разрабатываться с середины 80-х годов в основном для поддержки приложений САПР. Сложные структуры данных систем автоматизированного проектирования, оказалось, очень удобно оформлять в виде объектов, а технические чертежи проще хранить в базе данных, чем в файлах. Это позволяет обойтись без декомпозиции графических структур на элементы и записи их в файлы после завершения работы с чертежом, выполнения обратной операции при внесении любого изменения. Если типичные реляционные базы данных имеют связи глубиной в два уровня, то иерархическая информация чертежей САПР обычно включает порядка десяти уровней, что требует достаточно сложных операций для “сборки” результата. Объектные базы данных хорошо соответствовали подобным задачам, и эволюция многих СУБД началась именно с рынка САПР.
Между тем рынок САПР был быстро насыщен, и в начале 90-х годов производители ООСУБД обратили внимание на другие области применения, уже прочно занятые реляционными СУБД. Для этого потребовалось оснастить ООСУБД функциями оперативной обработки транзакций (OLTP), утилитами администратора баз данных (database administrator – DBA), средствами резервного копирования/восстановления и т. д. Работы в данном направлении продолжаются и сегодня, но уже можно сказать, что переход к коммерческим приложениям идет достаточно успешно.
В реляционных базах данных (Relational Database System, RDBS) все данные отображаются в двумерных таблицах. База данных, таким образом, это ни что иное, как набор таблиц. RDBS и ориентированные на записи системы организованы на основе стандарта B-Tree или методе доступа, основанном на индексации – Indexed Sequential Access Method (ISAM) и являются стандартными системами, использующимися в большинстве современных программных продуктов. Для обеспечения комбинирования таблиц для определения связей между данными, которые практически полностью отсутствуют в большинстве программных реализаций B-Tree и ISAM, используется языки, подобные SQL (IBM), Quel (Ingres) и RDO (Digital Equipment), причем стандартом отрасли в настоящее время стал язык SQL, поддерживаемый всеми производителями реляционных СУБД.
Оригинальная версия SQL – это интерпретируемый язык, предназначенный для выполнения операций над базами данных. Язык SQL был создан в начале 70-х как интерфейс для взаимодействия с базами данных, основанными на новой для того времени реляционной теории. Реальные приложения обычно написаны на других языках, генерирующих код на языке SQL и передающих их в СУБД в виде текста в формате ASCII. Нужно отметить также, что практически все реальные реляционные (и не только реляционные) системы помимо реализации стандарта ANSI SQL, включают в себя дополнительные расширения, например, поддержка архитектуры клиент-сервер или средства разработки приложений.
Строки таблицы составлены из полей, заранее известных базе данных. В большинстве систем нельзя добавлять новые типы данных. Каждая строка в таблице соответствует одной записи. Положение данной строки может изменяться вместе с удалением или вставкой новых строк.
Чтобы однозначно определить элемент, ему должны быть сопоставлены поле или набор полей, гарантирующих уникальность элемента внутри таблицы. Такое поле или поля называются первичным ключом (primary key) таблицы и часто являются числами. Если одна таблица содержит первичным ключ другой, это позволяет организовать связь между элементами разных таблиц. Это поле называется внешним ключом (foreign key).
Так как все поля одной таблицы должны содержать постоянное число полей заранее определенных типов, приходится создавать дополнительные таблицы, учитывающие индивидуальные особенности элементов, при помощи внешних ключей. Такой подход сильно усложняет создание, сколько - нибудь сложных взаимосвязей в базе данных. Еще один крупный недостаток реляционных баз данных – это высокая трудоемкость манипулирования информацией и изменения связей.
Объектно-ориентированные базы данных применяются с конца 1980-х для обеспечения управления базами данных приложениями, построенными в соответствии с концепцией объектно-ориентированного программирования. Объектная технология расширяет традиционную методику разработки приложений новым моделированием данных и методами программирования. Для повторного использования кода и улучшения сохранности целостности данных в объектном программировании данные и код для их обработки организованы в объекты. Таким образом, практически полностью снимаются ограничения на типы данных.
Если данные состоят из коротких, простых полей фиксированной длины (имя, адрес, баланс банковского счета), то лучшим решением будет применение реляционной базы данных. Если, однако, данные содержат вложенную структуру, динамически изменяемый размер, определяемые пользователем произвольные структуры (мультимедиа, например), представление их в табличной форме будет, как минимум, непростым. В то же время в ООСУБД каждая определенная пользователем структура – это объект, непосредственно управляемый базой данных.
В РСУБД связи управляются пользователем, создающим внешние ключи. Затем для обнаружения связей динамически во время выполнения система просматривает две (или больше) таблицы, сравнивая внешние ключи до достижения соответствия. Этот процесс, называемый объединением (join), является слабой стороной реляционной технологии. Более двух или трех уровней объединений – сигнал, чтобы искать лучшее решение. В ООСУБД пользователь просто объявляет связь, и СУБД автоматически генерирует методы управления, динамически создавая, удаляя и пересекая связи. Ссылки при этом прямые, нет необходимости в просмотре и сравнении или даже поиске индекса, который может сильно сказаться на производительности. Таким образом, применение объектной модели предпочтительнее для баз данных с большим количеством сложных связей: перекрестных ссылок, ссылок, связывающих несколько объектов с несколькими (many-to-many relationships) двунаправленными ссылками.
В отличие от реляционных, ООСУБД полностью поддерживают объектно-ориентированные языки программирования. Разработчики, применяющие С++ или Smalltalk, имеют дело с одним набором правил (позволяющих использовать такие преимущества объектной технологии, как наследование, инкапсуляция и полиморфизм). Разработчик не должен прибегать к трансляции объектной модели в реляционную и обратно. Прикладные программы обращаются и функционируют с объектами, сохраненными в базе данных, которая использует стандартную объектно-ориентированную семантику языка и операции. Напротив, реляционная база данных требует, чтобы разработчик транслировал объектную модель к поддерживаемой модели данных и включил подпрограммы, чтобы обеспечить это отображение во время выполнения. Следствием являются дополнительные усилия при разработке и уменьшение эффективности.
И, наконец, ООСУБД подходят (опять же без трансляций между объектной и реляционной моделями) для организации распределенных вычислений. Традиционные базы данных (в том числе и реляционные и некоторые объектные) построены вокруг центрального сервера, выполняющего все операции над базой. По существу, эта модель мало отличается от мэйнфреймовой организации 60-х годов с центральной ЭВМ – мэйнфреймом (mainframe), выполняющей все вычисления, и пассивных терминалов. Такая архитектура имеет ряд недостатков, главным из которых является вопрос масштабируемости. В настоящее время рабочие станции (клиенты) имеют вычислительную мощность порядка 30 - 50 % мощности сервера базы данных, то есть большая часть вычислительных ресурсов распределена среди клиентов. Поэтому все больше приложений, и в первую очередь базы данных и средства принятия решений, работают в распределенных средах, в которых объекты (объектные программные компоненты) распределены по многим рабочим станциям и серверам и где любой пользователь может получить доступ к любому объекту. Благодаря стандартам межкомпонентного взаимодействия (об этом позже) все эти фрагменты кода комбинируются друг с другом независимо от аппаратного, программного обеспечения, операционных систем, сетей, компиляторов, языков программирования, различных средств организации запросов и формирования отчетов и динамически изменяются при манипулировании объектами без потери работоспособности.
Все ООСУБД по определению поддерживают сохранение и разделение объектов. Но, когда дело доходит до практической разработки приложений на разных ООСУБД, проявляется множество отличий в реализации поддержки трех характеристик:
Отметим, что ООБД не требуют многих из тех внутренних функций и механизмов, которые столь привычны и необходимы в реляционных БД. Например, при небольшом числе пользователей, длинных транзакциях и незначительной загрузке сервера объектные СУБД не нуждаются в поддержке сложных механизмов резервного копирования/восстановления (исторически сложилось так, что первые ООБД проектировались для поддержки небольших рабочих групп – порядка десяти человек – и не были приспособлены для обслуживания сотен пользователей). Тем не менее технология БД определенно созрела для крупных проектов.
Для иллюстрации первой категории рассмотрим механизм кэширования объектов. Большинство объектных СУБД помещают код приложения непосредственно в то же адресное пространство, где работает сама СУБД. Благодаря этому достигается повышение производительности часто в 10-100 раз по сравнению с раздельными адресными пространствами. Но при такой модели объект с ошибкой может повредить объекты и разрушить базу данных.
Существуют два подхода к организации реакции СУБД для предотвращения потери данных. Большинство систем передают приложению указатели на объекты, и рано или поздно такие указатели обязательно становятся неверными. Так, они всегда неправильны после перехода объекта к другому пользователю (например, после перемещения на другой сервер). Если программист, разрабатывающий приложение, пунктуален, то ошибки не возникает. Если же приложение попытается применить указатель в неподходящий для этого момент, то в лучшем случае произойдет крах системы, в худшем – будет утеряна информация в середине другого объекта и нарушится целостность базы данных.
Есть метод, лучший, чем использование прямых указателей (Рисунок 1). СУБД добавляет дополнительный указатель и при необходимости, если объект перемещается, система может автоматически разрешить ситуацию (перезагрузить, если это необходимо, объект) без возникновения конфликтной ситуации.
Существует еще одна причина для применения косвенной адресации: благодаря этому можно отслеживать частоту вызовов объектов для организации эффективного механизма свопинга.
Это необходимо для реализации уже второго необходимого свойства баз данных – масштабируемости. Опять следует упомянуть организацию распределенных компонентов. Классическая схема клиент-сервер, где основная нагрузка приходится на клиента (такая архитектура называется еще “толстый клиент-тонкий сервер”), лучше справляется с этой задачей, чем мэйнфреймовая структура, однако ее все равно нельзя масштабировать до уровня предприятия. Благодаря многозвенной архитектуре клиент-сервер (N-Tier architecture) происходит равномерное распределение вычислительной нагрузки между сервером и конечным пользователем. Нагрузка распределяется по трем и более звеньям, обеспечивающим дополнительную вычислительную мощность. К чему же еще ведет такая практика? “Архитектура клиент-сервер, еще совсем недавно считавшаяся сложной средой, постепенно превратилась в исключительно сложную среду. Почему? Благодаря ускоренному переходу к использованию систем клиент-сервер нескольких звеньев”. Разработчикам приходится расплачиваться дополнительными сложностями, большими затратами времени и множеством проблем, связанных с интеграцией. Оставим очередное упоминание распределенных компонентов на этой не лишенной оптимизма ноте.
Информация о работе Новые информационные технологии в образовании