Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 18:22, курсовая работа
При описании различных природных и технологических процессов, происходящих в некоторой системе, чрсто ставится задача построения математической модели поведения данной системы. Методы построения различных математических моделей, отражающих существенные черты данного явления или процесса, проверка качества модели границ ее применимости, применение модели для проведения конкретных расчетов и предсказания поведения системы составляют предмет математического моделирования в данной предметной области.
1 Введение 5
2 Теоретические сведения 6
2.1 Понятие аппроксимации. 6
2.2 Метод наименьших квадратов. 6
2.3 Определение параметров аппроксимации. 7
2.4 Оценка статистических параметров системы наблюдаемых величин. 9
2.5 Оценка точности аппроксимации. 10
3 Постановка задания 12
4 Выполнение расчетов в MS Excel по расчетным формулам 13
5 Построение графиков и вывод уравнений регрессии с помощью встроенных средств 20
6 Выполнение расчетов в программе Mathcad 22
7 Заключение 29
8 Список литературы: 30
Министерство образования и науки Российской Федерации
Федеральное
государственное бюджетное
высшего профессионального образования
Национальный минерально-сырьевой университет «Горный»
Кафедра информатики и компьютерных технологий
КУРСОВАЯ РАБОТА
По дисциплине ИНФОРМАТИКА
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Построение аналитических зависимостей и анализ эмпирических данных в экосистеме
Автор: студент
гр. ИЗС-11-1
______________ /Кольвах К.А./
ОЦЕНКА: _____________
Дата: ______________
ПРОВЕРИЛ
Руководитель работы доцент __________ /Пивоварова И.И./
(должность)
(подпись)
Санкт-Петербург
2012
Министерство образования и науки Российской Федерации
Федеральное
государственное бюджетное
высшего профессионального образования
Национальный минерально-сырьевой университет «Горный»
УТВЕРЖДАЮ
Зав.кафедрой _________________
__________________________
“15” декабря 2012 г.
Кафедра информатики и компьютерных технологий
По дисциплине
(наименование учебной дисциплины согласно учебному плану)
Руководитель работы: Доцент
_____________ / Пивоварова
И.И. / (должность)
(подпись)
Дата выдачи задания “15” сентября 2012 г.
Аннотация
Базовые
знания в области информатики
и практические навыки работы на персональном
компьютере позволяют эффективно применять
современное программное
Объем пояснительной записки – 30 стр.
Число таблиц – 8 , иллюстраций – 6 .
The summary
The base knowledge in the field of computer science and practical skills of operation on the personal computer mining-industry ecology of the scheme of dressing by two stages. The composed programs allow fast receiving results at variation of input data in the defined ranges.
Size of an explanatory slip - 30 pp.
Number of the tables - 8 , illustrations - 6 .
Оглавление
1 Введение 5
2 Теоретические сведения 6
2.1 Понятие аппроксимации. 6
2.2 Метод наименьших квадратов. 6
2.3 Определение параметров аппроксимации. 7
2.4 Оценка статистических параметров системы наблюдаемых величин. 9
2.5 Оценка точности аппроксимации. 10
3 Постановка задания 12
4 Выполнение расчетов в MS Excel по расчетным формулам 13
5 Построение графиков и вывод уравнений регрессии с помощью встроенных средств 20
6 Выполнение расчетов в программе Mathcad 22
7 Заключение 29
8 Список литературы: 30
При описании
различных природных и
Для представителей
моей специальности – горно-
В отличии
от физических моделей математические
модели не требуют огромных вложений
на проведение эксперимента, так как
математическая модель является лишь
формальным описанием объекта, а
не его физическим аналогом. Математическая
модель за счет изменения ряда параметров
дает возможность изучить ее поведение
в самых разнообразных
При наблюдении
состояния экологической
Пусть в результате наблюдений получена таблица совместно наблюдаемых значений xi, yi:
Таблица 1
№п/п |
1 |
2 |
n | |||
x |
x1 |
x2 |
… |
xi |
… |
xn |
y |
y1 |
y2 |
… |
yi |
… |
yn |
Требуется найти некоторую функцию, заданную аналитически и удовлетворительно описывающую зависимость y от x. Приближённое представление исходной функции с помощью некоторой зависимости называется её аппроксимацией. Выбор вида аппроксимирующей функции остаётся за исследователем и зависит от ряда соображений. Как правило, предпочтение отдаётся достаточно простым функциям: линейной, квадратичной, экспоненциальной, логарифмической, обратно пропорциональной. Зачастую выбору конкретной зависимости помогает анализ графика, построенного по табличным данным, а также физические представления. Выберем аппроксимирующую функцию, зависящую от нескольких параметров:
(1)
Подставив в формулу (1) эмпирическое значение переменной x=xi, получим теоретическое значение величины , вычисленное по формуле:
(2)
Разность называется отклонением и представляет ошибку аппроксимации данной табличной функции. Для оценки качества аппроксимации функции в целом требуется оценить суммарную ошибку.
Метод наименьших квадратов — один из базовых методов регрессионного анализадля оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.
Есть разные способы оценки суммарной ошибки аппроксимации. Чаще всего оценивают суммарную квадратичную ошибку, равную сумме квадратов отклонений эмпирических значений функции от теоретических:
Параметры должны быть определены из условия минимума суммарной квадратичной ошибки. Запишем необходимое условие экстремума функции многих переменных - равенство нулю её частных производных:
(4)
Формулы (4) представляют собой систему m уравнений с m неизвестными для определения наилучших значений параметров. Если функция (1) линейна относительно параметров , то система (4) представляет собой систему линейных уравнений.
Метод определения параметров из условия минимума суммарной квадратичной ошибки называется методом наименьших квадратов.
Рассмотрим различные случаи аппроксимации эмпирических данных функциями конкретного вида:
(5)
Тогда система (4) примет вид:
(6)
(7)
Тогда система (4) будет иметь вид:
(8)
(9)
В этом случае нужно вначале линеаризовать формулу (9) с помощью логарифмирования, получим:
К этому уравнению можно
Тогда уравнение перепишется в виде:
и
система для определения
(10)
или,
возвращаясь к табличным
(11)
(12)
Этот случай легко сводится к первому, если ввести обозначения t=ln x, а в формулу (6) подставить вместо xi массив ti=ln xi.
Система (6) примет вид:
(13)
Решая системы линейных уравнений (6), (8), (11), (13), определим параметры аппроксимирующих функций. Для решения систем можно использовать различные методы: метод Крамера, метод Гаусса, метод Зейделя, метод обратной матрицы. Матрицы систем (6), (8), (11), (13) являются невырожденными квадратными матрицами, поэтому система уравнений для определения параметров аппроксимирующих функций имеет единственное решение.
Кроме указанных методов можно использовать методы решения систем с симметричной матрицей, т.к. матрицы всех рассмотренных систем являются симметричными.
После вычисления коэффициентов уравнений
можно построить таблицы
(14)
(15)
(16)
(17)
и
вычислить суммарную
Кроме указанных выше аппроксимирующих
функций можно также
Многочлен третьей степени является линейным относительно параметров – коэффициентов многочлена. Можно рассматривать в качестве аппроксимирующей функции многочлены любой степени.
Параметры уравнений (5), (7), (9), (12) связаны некоторыми соотношениями со статистическими оценками эмпирических данных. Особенно это отросится к линейному уравнению (5).
Информация о работе Построение аналитических зависимостей и анализ эмпирических данных в экосистеме