Автор работы: Пользователь скрыл имя, 30 Апреля 2014 в 22:01, дипломная работа
Целью дипломного проекта является организация корпоративной компьютерной сети.
Для решения поставленной цели в работе решаются следующие задачи:
• Выбор СКС, топологии и оборудования;
• Выбор способа управления сетью;
• Выбор оборудования для монтажа ЛВС;
• Рассмотрение вопросов безопасности сети;
• Рассмотрение условий эксплуатации сети.
Необходимо разработать рациональную, гибкую структурную схему сети предприятия, выбрать аппаратную конфигурацию сервера, а так же проработать вопросы обеспечения необходимого уровня защиты данных.
ВВЕДЕНИЕ ……………………………………………………………………..6
ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР ЛОКАЛЬНЫХ СЕТЕЙ……………8
1.1 Обзор существующих принципов построения сетей ………………….....8
1.1.1 Понятие «локальная вычислительная сеть» …………....................8
1.1.2 Классификация ЛВС………………………………………………....9
1.1.2.1 По расстоянию между узлами……………………………… ...9
1.1.2.2 По топологии………………………………………………......10
1.1.2.3 По способу управления…………………………………….....10
1.1.2.4 По методу доступа…………………………………………. …11
1.1.3 Требования к ЛВС ………………………………………………….12
1.1.4 Технологии ЛВС ……………………………………………………14
1.2 Общие сведения по СКС ………………………………………………......15
1.2.1 Определение структурированной кабельной системы …………...15
1.2.2 Топология СКС………………………………………………………15
1.2.3 Хронология развития стандартов СКС ……………………………15
1.2.4 Витая пара………………………………………………………… ..21
1.2.5 Волоконно-оптический кабель…………………………………….24
1.2.6 Беспроводные сети ………………………………………………....27
1.2.7 Сравнительные характеристики различных архитектур СКС…...27
1.2.8 Подсистемы СКС……………………………………………………29
1.2.9 Технические помещения …………………………………………..31
1.3 Коммутационное оборудование ……………………………………….....32
1.3.1 Рабочее место ………………………………………………………32
1.3.2 Телекоммуникационный шкаф …………………………………...33
1.3.3 Коммутационные блоки..…………………………………………..35
1.3.4 Коммутационные панели (пэтч-панели).………………………....36
1.3.5 Пэтч-корды……………………………………………………….....39
1.3.6 Коннекторы……………………………………………………….. .41
1.3.6.1 Кабельные коннекторы ……………………………………....41
1.3.6.2 Модульные коннекторы ……………………………………...41
1.4 Типы устройств Fast Ethernet (Gigabit Ethernet) ……………………….42
1.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI …………………………………………46
1.6 Вывод по главе 1 ………………………………………………………….48
ГЛАВА 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ …………………………………….49
2.1 Проектирование структурированной кабельной системы (СКС) и локальной вычислительной сети (ЛВС) Администрации морского порта «Калининград». …………………………………………….49
2.1.1Общие сведения. …………………………………………………...49
2.1.2Назначение и цели выполнения работ. ……………………………50
2.1.3 Объект, в котором должна быть выполнена работа…………….. 50
2.1.4 Технические требования к проектируемой системе……………. 51
2.1.5 Локальная вычислительная сеть. …………………………………57
2.1.6 Подсистема контроля доступа к среде передачи данных
(СПД) ЛВС……………………………………………………………….57
2.1.7 Подсистема мониторинга и управления
сетевым активным оборудованием ЛВС. ………………………………57
2.2 Монтаж структурированной кабельной системы (СКС) и
локальной вычислительной сети (ЛВС)
Администрации морского порта «Калининград»……………………………58
2.2.1 Общие сведения. ……………………………………………………58
2.2.2 Назначение и цели выполнения работ……………………………. 59
2.2.3 Технические требования к монтажу структурированной
кабельной системы (СКС) и локальной вычислительной
сети (ЛВС) Администрации морского порта «Калининград». ………...59
2.2.4 Состав и содержание работ…………………………………………62
2.3. Вывод по главе 2. ………………………………………………………….63
ГЛАВА 3. ПРОЕКТИРОВАНИЕ ЛВС НА БАЗЕ СКС
АДМИНИСТРАЦИИ КАЛИНИНГРАДСКОГО МОРСКОГО ПОРТА……64
3.1Выбор структурированной кабельной системы…………………………..64
3.2Выбор топологии. ………………………………………………………….65
3.3Выбор способа управления сетью. ……………………………………….70
3.4Выбор комплектующих. …………………………………………………..71
3.4.1Активное сетевое оборудование…………………………………...71
3.4.1.1 Сервера. ……………………………………………………….71
3.4.1.2 ИБП. …………………………………………………………...73
3.4.1.3 Хранилище. …………………………………………………...73
3.4.1.4 Коммутатор (Switch)………………………………………….74
3.4.1.5 Маршрутизатор (Router)…………………………………..….77
3.4.1.6 Консоль. ………………………………………………………78
3.4.2 Пассивное оборудование…………………………………………..79
3.4.3 Система охлаждения……………………………………………….81
3.5Построение технической модели. ………………………………………..82
3.6Расчет полезной пропускной способности сети………………………....89
3.7Защита информации. ………………………………………………………91
3.8Тестирование. ……………………………………………………………...95
3.9 Вывод по главе 3. …………………………………………………………97
ГЛАВА 4. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ…………..98
4.1 Технико-экономическое обоснование целесообразности
проектирования ЛВС. ………………………………………………………...98
4.1.1 Экономическая часть. ……………………………………………..99
4.1.1.1 Затраты на основные и вспомогательные материалы. …….99
4.1.1.2 Затраты на комплектующие изделия. ……………………...100
4.1.2 Расчет общей сметы затрат на проектирование
и монтаж ЛВС. ………………………………………………………….101
4.1.3 Оценка экономической эффективности
проектируемой ЛВС…………………………………………………….101
4.2 Эксплуатация системы. ……………………………………………….....102
4.2.1 Условия эксплуатации. ………………………………………….102
4.2.2 Обеспечение пожаробезопасности. …………………………….103
4.2.3 Состав обслуживающего персонала. …………………………...105
4.3 Вывод по главе 4. ……………………………………………………….106
ПРИЛОЖЕНИЯ. ……………………………………………………………107
ЗАКЛЮЧЕНИЕ. …………………………………………………………….110
БИБЛИОГРАФИЧЕСКИЙ СПИСОК. …………………………………….112
Рассчитаем теоретическую полезную пропускную способность Fast Ethernet без учета коллизий и задержек сигнала в сетевом оборудовании.
Отличие полезной пропускной способности от полной пропускной способности зависит от длины кадра. Так как доля служебной информации всегда одна и та же, то, чем меньше общий размер кадра, тем выше «накладные расходы». Служебная информация в кадрах Ethernet составляет 18 байт (без преамбулы и стартового байта), а размер поля данных кадра меняется от 46 до 1500 байт. Сам размер кадра меняется от 46 + 18 = 64 байт до 1500 + 18 = 1518 байт. Поэтому для кадра минимальной длины полезная информация составляет всего лишь 46 / 64 ≈ 0,72 от общей передаваемой информации, а для кадра максимальной длины 1500 / 1518 ≈ 0,99 от общей информации.
Чтобы рассчитать полезную пропускную способность сети для кадров максимального и минимального размера, необходимо учесть различную частоту следования кадров. Естественно, что, чем меньше размер кадров, тем больше таких кадров будет проходить по сети за единицу времени, перенося с собой большее количество служебной информации.
Так, для передачи кадра минимального размера, который вместе с преамбулой имеет длину 72 байта, или 576 бит, потребуется время, равное 576 bt, а если учесть межкадровый интервал в 96 bt то получим, что период следования кадров составит 672 bt. При скорости передачи в 100 Мбит/с это соответствует времени 6,72 мкс. Тогда частота следования кадров, то есть количество кадров, проходящих по сети за 1 секунду, составит 1/6,72 мкс ≈ 148810 кадр/с.
При передаче кадра максимального размера, который вместе с преамбулой имеет длину 1526 байт или 12208 бит, период следования составляет 12 208 bt + 96 bt = 12 304 bt, а частота кадров при скорости передачи 100 Мбит/с составит 1 / 123,04 мкс = 8127 кадр/с.
Зная частоту следования кадров f и размер полезной информации Vп в байтах, переносимой каждым кадром, нетрудно рассчитать полезную пропускную способность сети: Пп (бит/с) = Vп · 8 · f.
Для кадра минимальной длины (46 байт) теоретическая полезная пропускная способность равна
Ппт1 = 148 810 кадр/с = 54,76
что составляет лишь немногим больше половины от общей максимальной пропускной способности сети.
Для кадра максимального размера (1500 байт) полезная пропускная способность сети равна
Ппт2 = 8127 кадр/с = 97,52
Таким образом, в сети Fast Ethernet полезная пропускная способность может меняться в зависимости от размера передаваемых кадров от 54,76 до 97,52 Мбит/с.
Рассчитаем теоретическую полезную пропускную способность Gigabit Ethernet без учета коллизий и задержек сигнала в сетевом оборудовании.
К счастью, Gigabit Ethernet использует тот же формат кадра (от 64 до 1500 байт), что и стандартные Ethernet и Fast Ethernet.
Служебная информация в кадрах Gigabit Ethernet составляет 18 байт (без преамбулы и стартового байта), а размер поля данных кадра меняется от 46 до 1500 байт. Сам размер кадра меняется от 46 + 18 = 64 байт до 1500 + 18 = 1518 байт. Поэтому для кадра минимальной длины полезная информация составляет всего лишь 46 / 64 ≈ 0,72 от общей передаваемой информации, а для кадра максимальной длины 1500 / 1518 ≈ 0,99 от общей информации.
Так, для передачи кадра минимального размера, который вместе с преамбулой имеет длину 72 байта, или 576 бит, потребуется время, равное 576 bt, а если учесть межкадровый интервал в 96 bt то получим, что период следования кадров составит 672 bt. При скорости передачи в 1000 Мбит/с это соответствует времени 0,672 мкс. Тогда частота следования кадров, то есть количество кадров, проходящих по сети за 1 секунду, составит 1/0,672 мкс ≈ 1488100 кадр/с.
При передаче кадра максимального размера, который вместе с преамбулой имеет длину 1526 байт или 12208 бит, период следования составляет 12 208 bt + 96 bt = 12 304 bt, а частота кадров при скорости передачи 1000 Мбит/с составит 1 / 12,304 мкс = 81275 кадр/с.
Зная частоту следования кадров f и размер полезной информации Vп в байтах, переносимой каждым кадром, нетрудно рассчитать полезную пропускную способность сети: Пп (бит/с) = Vп · 8 · f.
Для кадра минимальной длины (46 байт) теоретическая полезная пропускная способность равна
Ппт1 = 1488100 кадр/с = 547,
что составляет лишь немногим больше половины от общей максимальной пропускной способности сети.
Для кадра максимального размера (1500 байт) полезная пропускная способность сети равна
Ппт2 = 81275 кадр/с = 975,3
Таким образом, в сети Gigabit Ethernet полезная пропускная способность может меняться в зависимости от размера передаваемых кадров от 547,62 до 975,3 Мбит/с.
3.7 Защита информации.
Исследование и анализ многочисленных случаев воздействий на информацию и несанкционированного доступа к ней показывают, что их можно разделить на случайные и преднамеренные.
Для создания средств защиты информации необходимо определить природу угроз, формы и пути их возможного проявления и осуществления в автоматизированной системе. Для решения поставленной задачи все многообразие угроз и путей их воздействия приводится к простейшим видам и формам, которые были бы адекватны их множеству в автоматизированной системе.
Исследование опыта проектирования, изготовления, испытаний и эксплуатации автоматизированных систем говорят о том, что информация в процессе ввода, хранения, обработки и передачи подвергается различным случайным воздействиям. Причинами таких воздействий могут быть:
Преднамеренные угрозы связаны с действиями человека, причинами которых могут быть определенное недовольство своей жизненной ситуацией, сугубо материальный интерес или простое развлечение с самоутверждением своих способностей, как у хакеров, и т.д.
Нет никаких сомнений, что нашей сети произойдут случайные или преднамеренные попытки взлома сети извне или попытки доступа к конфиденциальной информации изнутри. В связи с этим обстоятельством требуется тщательно предусмотреть защитные меры.
Принято различать пять основных средств защиты информации:
Для решения проблемы защиты сети выбран аппаратно – программный комплекс «Континент»
Обезопасить сеть от вторжения со стороны сети передачи данных и несанкционированного доступа к ресурсам со стороны удаленных сегментов, а так же обеспечить конфиденциальность при передаче информации по открытым каналам связи можно при помощи технологии построения виртуальных частных сетей (Virtual Private Network —VPN).
По этой технологии построен аппаратно-программный комплекс шифрования (АПКШ) «Континент», разработанный компанией «Информзащита». Представляя из себя конгломерат шифратора, межсетевого экрана и маршрутизатора, комплекс позволяет обеспечить:
В качестве составных частей VPN могут выступать локальные вычислительные сети организации, их сегменты и отдельные компьютеры (в том числе переносные или домашние компьютеры руководителей и сотрудников).
Наличие всех необходимых сертификатов ФСБ и ФСТЭК обеспечивает возможность использования АПКШ «Континент» в организациях, работающих с конфиденциальной информацией, в полном соответствии с Российским законодательством.
Достоинства АПКШ «Континент»
Таблица 3.6 Технические характеристики АПКШ «Континент».
Алгоритм шифрования |
ГОСТ 28147-89 режим гаммирования с обратной связью |
Длина ключа, бит |
256 |
Защита передаваемых данных от искажения |
ГОСТ 28147-89 режим имитовставки |
Предельная способность КШ (шифрование, имитовставка, туннелирование) |
До 80 Мбит/с |
Увеличение размера пакета с учетом дополнительного IP-заголовка, байт, не более |
26-36 байт |
Количество КШ в сети с одним ЦУС |
до 5000 |
Максимальное количество сетевых интерфейсов у одного КШ |
6 |
Максимальное количество КШ в кластере “горячего” резервирования |
2 |
Режим работы |
Круглосуточный, необслуживаемый |
Предусматривается два варианта комплектации криптографического шлюза:
Гарантийный период 2 года.
Для обеспечения защиты разрабатываемой сети требуется один аппаратно-программный комплекс шифрования «Континент» на базе промышленного компьютера Iwill 1U, с возможностью установки его в теллекомуникационный шкаф 19”.
Примечание:
ГОСТ 28147—89 — советский и российский стандарт симметричного шифрования, введённый в 1990 году. Полное название — «ГОСТ 28147—89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.
3.8 Тестирование.
Завершающим этапом проекта является тестирование ЛВС и ее ввод в эксплуатацию.
Измерительное и тестирующее оборудование СКС на основе витой пары можно подразделить на три основные группы:
Для тестирования СКС в рамках дипломной работы нам понадобится Кабельный тестер MicroMapper Pro
Рис. 3.5 Кабельный тестер MicroMapper Pro.
MicroMapper Pro позволяет идентифицировать все существующие ошибки в схеме разводки кабеля, включая определение расщепленных пар (Split pair), а также измерить расстояние до неисправности. Вся информация отображается на большом высококонтрастном дисплее.
Тестер позволяет проверить схему разводки кабеля, измерить его длину и осуществить трассировку кабеля с помощью номерных идентификаторов или встроенного генератора тонального сигнала.
Кабельный тестер MicroMapper Pro предназначен для монтажников и специалистов по обслуживанию кабельной инфраструктуры на основе витой пары или коаксиального кабеля, которым необходимо быстро и с помощью одного прибора выполнить базовое тестирование кабельной системы.
Функциональные особенности:
Таблица 3.7 Спецификация кабельного тестера MicroMapper Pro.
Тип портов |
Витая пара: UTP/FTP RJ45 Коаксиальный: F-соединитель 75 Ω, 50 Ω, 93 Ω кабелей |
Тестирование кабеля |
Измерение длины кабеля до 350 м, проверка разводки на соответствие стандартам TIA-568A/B при помощи удалённых идентификаторов порта |
Генератор тона |
Аналоговый: 400 Гц, 1 кГц |
Источник питания |
Тип батареи: 6 AAA щелочные батареи |
Габариты (BxШхГ) |
15.09 x 7.19 x 3.51 см |
Вес |
270 грамм |
Гарантия |
Один год |
3.9 Вывод по главе 3:
Глава 3 посвящена проектированию локальной вычислительной сети (ЛВС) построенной на базе структурированной кабельной системы (СКС). С учетом двух первых глав были выбраны подходящие технологии построения сети, ее топология, составлена спецификация оборудования для построения сети и непосредственно разработан проект локальной вычислительной сети для Администрации Калининградского морского порта. Сам проект и выбранное для него оборудование соответствует всем необходимым стандартам.