Разработка информационных систем на базе мобильных интерфейсов

Автор работы: Пользователь скрыл имя, 30 Ноября 2013 в 20:08, дипломная работа

Описание работы

Что бы ни говорили, а мобильность сегодня — явление глобальное, проникающее во многие сферы нашей жизни. Почти половина всех пользователей мобильных услуг проживают в пяти странах, среди которых и Россия. Ныне потребитель ищет не просто мобильный телефон, он внимательно изучает условия, соотнося их с требованиями современного рынка. Именно поэтому можно утверждать, что развитие мобильных технологий будет только ускоряться.

Содержание работы

ВВЕДЕНИЕ 5
1. ГОРОДСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ И МОБИЛЬНЫЕ ИНТЕРФЕЙСЫ 8
1.1 Введение в ГИС 8
1.2 Организация данных в ГИС 11
1.3 ГИС среди информационных технологий 17
1.4 Что ГИС могут сделать для туризма 24
1.5 Предметно ориентированные ГИС 25
1.6 Основные концепции информационной визуализации, используемые в ГИС 25
1.7 ГИС и мобильные интерфейсы 27
2. ГЕОКОДИРОВАНИЕ В ИС 28
2.1 Понятие геокодирования. 28
2.2 Назначение геокодирования 28
2.3 Методы геокодирования 29
3. ОСНОВНЫЕ ТРЕБОВАНИЯ К ТУРИСТИЧЕСКОЙ КАРТЕ 33
4. ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА РАЗРАБОТКИ 34
4.1 Операционная система Google Android 34
5. ОПИСАНИЕ ПРОЕКТА ПРИЛОЖЕНИЯ 44
5.1 Структура программы. 44
5.2 Описание компонентов программы 45
5.3 Программная реализация. 58
ЗАКЛЮЧЕНИЕ 68
ЛИТЕРАТУРА 69

Файлы: 1 файл

Diplom__Ba_va__FINAL.doc

— 2.78 Мб (Скачать файл)

 

Растровые модели

В растровых моделях дискретизация осуществляется наиболее простым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. При этом каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности объекта. В ячейке модели содержится одно значение, усредняющее характеристику участка поверхности объекта. В теории обработки изображений эта процедура известна под названием пикселизация.

Основное назначение растровых моделей - непрерывное отображение поверхности. В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства - пиксель (ячейка). Упорядоченная совокупность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообьекта. Растровые модели позволяют отображать полутона и цветовые оттенки. Как правило, каждый элемент растра или каждая ячейка должны иметь лишь одно значение плотности или цвета. Это применимо не для всех случаев. Например, когда граница двух типов покрытий может проходить через центр элемента растра, элементу дается значение, характеризующее большую часть ячейки или ее центральную точку. Ряд систем позволяет иметь несколько значений для одного элемента растра.

 Для растровых моделей существует ряд характеристик: разрешение, ориентация, зоны, значение, положение. Разрешение - минимальный линейный размер наименьшего участка отображаемого пространства (поверхности), отображаемый одним пикселем. Пиксели обычно представляют собой прямоугольники или квадраты, реже используются треугольники и шестиугольники. Более высоким разрешением обладает растр с меньшим размером ячеек. Высокое разрешение подразумевает обилие деталей, множество ячеек, минимальный размер ячеек. Значение - элемент информации, хранящийся в элементе растра (пикселе) или легенде. Положение обычно задается упорядоченной парой координат (номер строки и номер столбца), которые однозначно определяют положение каждого элемента отображаемого пространства в растре.

Проводя сравнение векторных и растровых моделей, отметим удобство векторных для организации и работы со взаимосвязями объектов. Тем не менее, используя простые приемы, например, включая взаимосвязи в таблицы атрибутов, можно организовать взаимосвязи и в растровых системах. Необходимо остановиться на вопросах точности отображения в растровых моделях. В растровых форматах в большинстве случаев неясно, относятся ли координаты к центральной точке пикселя или к одному из его углов. Поэтому точность привязки элемента растра определяют как 1/2 ширины и высоты ячейки.

Растровые модели имеют следующие достоинства:

  • Растр не требует предварительного знакомства с явлениями, данные собираются с равномерно расположенной сети точек, что позволяет в дальнейшем на основе статистических методов обработки получать объективные характеристики исследуемых объектов. Благодаря этому растровые модели могут использоваться для изучения новых явлений, о которых не накоплен материал. В силу простоты этот способ получил наибольшее распространение;
  • Растровые данные проще для обработки по параллельным алгоритмам и этим обеспечивают более высокое быстродействие по сравнению с векторными;
  • Некоторые задачи, например создание буферной зоны, много проще решать в растровом виде;
  • Многие растровые модели позволяют вводить векторные данные, в то время как обратная процедура весьма затруднительна для векторных моделей;
  • Процессы растеризации много проще алгоритмически, чем процессы векторизации, которые зачастую требуют экспертных решений.

 

Векторные модели

Векторные модели строятся на векторах, занимающих часть пространства в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество - требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление, а главное более высокая точность позиционирования и представления данных.

При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы задаются наборами линий. Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС.

Системы ГИС, работающие в основном с векторными моделями, получили название векторных ГИС. В реальных ГИС имеют дело не с абстрактными линиями и точками, а с объектами, содержащими линии и ареалы, занимающими пространственное положение, а также со сложными взаимосвязями между ними. Поэтому полная векторная модель данных ГИС отображает пространственные данные как совокупность следующих основных частей: геометрические (метрические) объекты (точки, линии и полигоны); атрибуты - признаки, связанные с объектами; связи между объектами.

Векторные модели (объектов) используют в качестве элементарной модели последовательность координат, образующих линию. Линией называют границу, сегмент, цепь или дугу. Основные типы координатных данных в классе векторных моделей определяются через базовый элемент линия следующим образом. Точка определяется как выродившаяся линия нулевой длины, линия - как линия конечной длины, а площадь представляется последовательностью связанных между собой отрезков. Каждый участок линии может являться границей для двух ареалов либо двух пересечений (узлов). Отрезок общей границы между двумя пересечениями (узлами) имеет разные названия, которые являются синонимами в предметной области ГИС. Специалисты по теории графов предпочитают слову линия термин ребро, а для обозначения пересечения употребляют термин вершина. Национальным стандартом США официально санкционирован термин цепь. В некоторых системах (arclnfo, geodraw) используется термин дуга. В отличие от обычных векторов в геометрии дуги имеют свои атрибуты. Атрибуты дуг обозначают полигоны по обе стороны от них. По отношению к последовательному кодированию дуги эти полигоны именуются левый и правый. Понятие дуги {цепи, ребра) является фундаментальным для векторных ГИС векторные модели получают разными способами. Один из наиболее распространенных - векторизация сканированных (растровых) изображений. Векторизация - процедура выделения векторных объектов с растрового изображения и получение их в векторном формате. Для векторизации необходимо высокое качество (отчетливые линии и контуры) растровых образов. Чтобы обеспечить требуемую четкость линий иногда приходится заниматься улучшением качества изображения.

При векторизации возможны ошибки, исправление которых осуществляется в два этапа:

1) корректировка растрового изображения  до его векторизации;

2) корректировка векторных объектов.

В векторных форматах набор данных определен объектами базы данных. Векторная модель может организовывать пространство в любой последовательности и дает "произвольный доступ" к данным. В векторной форме легче осуществляются операции с линейными и точечными объектами, например, анализ сети - разработка маршрутов движения по сети дорог, замена условных обозначений. В растровых форматах точечный объект должен занимать целую ячейку. Это создает ряд трудностей, связанных с соотношением размеров растра и размера объекта. Что касается точности векторных данных, то здесь можно говорить о преимуществе векторных моделей перед растровыми, так векторные данные могут кодироваться с любой мыслимой степенью точности, которая ограничивается лишь возможностями метода внутреннего представления координат. Обычно для представления векторных данных используется 8 или 16 десятичных знаков (одинарная или двойная точность).

1.3 ГИС среди информационных технологий

Первым вопросом человека, не знакомого с географическими информационными системами (ГИС), будет, конечно, "а зачем мне это нужно?".

На первый взгляд достаточно очевидным  является только применение ГИС в подготовке и распечатке карт и, может быть, в обработке аэро- и космических снимков. Реальный же спектр применений ГИС гораздо шире, и чтобы оценить его, нам стоит взглянуть на применение компьютеров вообще, тогда место ГИС будет представляться гораздо яснее.

Компьютеры дают не только большее удобство выполнения известных операций с документами, они являются носителем нового направления человеческой деятельности - информационных технологий, и современное общество основано в значительной степени на них.

Информацией в нашем понимании следует называть все, что может быть представлено в виде букв, цифр и изображений. Так вот, все методы, техники, приемы, средства, системы, теории, направления и т.д., которые нацелены на сбор, переработку и использование информации, вместе называются информационными технологиями. И ГИС – одна из них.

Эта технология объединяет традиционные операции при работе с базами данных, такими, как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий.

Создание карт и географический анализ не являются чем-то абсолютно  новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза.

До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах.

В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами - экскурсионный и экстремальный туризм, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.

Как же удается с помощью одной технологии решать столь разные задачи? Чтобы это понять, рассмотрим последовательно устройство, работу и примеры применения ГИС.

 

Составные части ГИС

Работающая ГИС включает в себя пять ключевых составляющих: аппаратные средства, программное обеспечение, данные, исполнители и методы.

 

  • Аппаратные средства.

Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных компьютеров и мобильных устройств.

 

  • Программное обеспечение  ГИС.

По  ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (dbms или субд); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (gui или гип) для легкого доступа к инструментам и функциям.

 

  • Данные.

Это вероятно наиболее важный компонент  ГИС. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных

 

  • Исполнители.

Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и конечные пользователи, которым ГИС помогает решать текущие каждодневные дела и проблемы.

 

  • Методы.

Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые составляются в соответствии со спецификой задач и работы каждой организации.

 

Задачи, которые решает ГИС.

ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

  • Ввод.

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой.

  • Манипулирование.

Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. Гис-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

  • Управление.

В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (субд), специальные компьютерные средства для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

  • Запрос и анализ.

При наличии ГИС и географической информации вы сможете получать ответы как на простые вопросы, так и на более сложные, требующие дополнительного анализа, запросы. Запросы можно задавать как простым щелчком мышью на определенном объекте, так и посредством развитых аналитических средств.

Информация о работе Разработка информационных систем на базе мобильных интерфейсов