Автор работы: Пользователь скрыл имя, 06 Декабря 2013 в 07:36, реферат
Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.
Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели.
Введение 3
1. Постановка задачи 5
2. Обзор существующих методов решения задачи 6 2.1.Метод Рунге-Кутта четвертого порядка для решения
уравнения первого порядка 6
2.2.Задача Коши 6
2.3.Метод Булирша- Штера с использованием
рациональной экстраполяции для системы уравнений 7
2.4 Метод Адамса 8
2.5. Метод Эйлера 9
3. Описание алгоритмов решения задания 13
3.1. Описание переменных 13
3.2. Блок- схема главного модуля 14
3.3. Описание алгоритма главной программы 14
3.4. Блок-схема функции “func” 15
3.5. Описание блок- схемы функции “func” 15
4. Описание программного обеспечения 16
4.1. Описание операционной системы 16
4.2. Описание языка программирования 18
4.3. Описание программы 19
5. Контрольный пример 21
6.Анализ полученных результатов 22
Список литературы 24
Приложение 25
Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.
Модифицированный метод Эйлера
Рассмотрим дифференциальное уравнение (2.5.1) y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.
Получаем точку Мк(хк,ук). Через Мк проводим касательную: у=ук=f(xk,yk)(x-xk). Делим отрезок (хк,хк1) пополам:
Получаем точку Nk/. В этой точке строим следующую касательную:
Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:
(2.5.8) αk=f(xk+h/2, yk+f(xk,Yk)h/2)
(2.5.8)-рекурентные формулы метода Эйлера.
Сначала вычисляют
вспомогательные значения
Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:
где у(х)-точное решение дифференциального уравнения.
Таким образом, методом
Тем самым преобразуются начальные условия: y(x0)=y0, z(x0)=z0, z0=y/0. (2.5.12)
3.Описание алгоритмов решения задачи
3.1.Описание переменных.
Наименование |
Тип |
Описание |
Входные данные | ||
Xi |
double |
Начальное значение (x) интервала вычисления |
Xkon |
double |
Конечное значение (x) интервала вычисления |
n |
integer |
Количество шагов |
Yi |
double |
Начальное значение y |
kx |
double |
Коэффициент при переменой x |
ky |
double |
Коэффициент при переменной y |
Выходные данные | ||
h |
double |
Фиксированное приращение аргумента (x) |
res |
double |
Расчётное значение уравнение y’=F(x,y) в точке (x) |
Промежуточные | ||
i |
integer |
Счётчик цикла |
Yprom |
double |
Промежуточное значение y в точке Xprom |
Xprom |
double |
Промежуточное значение x при h/2 |
a |
double |
Решение уравнения в точках f(Xprom,Yprom) |
f1 |
double |
Функция f(x,y) |
3.2. Блок- схема главного модуля
3.3 Описание алгоритма главной программы.
Номер блока |
Описание |
1 |
Ввод начального и конечного значений интервала вычисления уравнения, количество шагов, начальное значение у, а также коэффициенты при kx и ky. |
2 |
Вычисление фиксированного приращения аргумента х |
3 |
Цикл с шагом 1 и конечным значением не превышающим количество шагов, который высчитывает значение y на определённом интервале |
4 |
Функция для расчёта уравнения вида y’=f(x,y); |
5 |
Вывод результатов на интервале X |
3.4 Блок-схема функции “func”.
Номер блока |
Описание |
1 |
Вычисление: функции f1 с подстановкой начальных значений; промежуточных значений Yprom и Xprom, значения a для вычисления f(Xprom,Yprom) и расчёт результатов функции и переход на следующий шаг. |
2 |
Приращение аргумента x на h |
3 |
Вывод результатов уравнения и интервала |
*Реализация алгоритма на языке программирования C++ представлена в приложении .
4.Описание программного обеспечения.
4.1 Описание операционной системы
Основное требование к операционной системе (ОС), предъявляемое поставленной задачей, это наличие ANSI или POSIX совместимого компилятора языка C++.
Для реализации задачи была выбрана последняя клиентская версия операционной системы Microsoft, основанная на ядре NT – Microsoft Windows XP Professional.
Указанная операционная система обладает рядом преимуществ:
Исходный код программы может быть откомпилирован и под другой операционной системой, если для таковой имеется ANSI или POSIX совместимый компилятор языка C++.
Программа была протестирована на операционной системе Microsoft Windows XP Professional SP1.
Технические данные :
4.2 Описание языка программирования
Язык программирования С++
С++ - это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на лег ко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы.
В С++ нет типов данных высокого уровня и нет первичных операций высокого уровня. В нем нет, например, матричного типа с операцией обращения или типа строка с операцией конкатенации. Если пользователю понадобятся подобные типы, их можно определить в самом языке. По сути дела, основное, чем занимается программирование на С++ - это определение универсальных и специально-прикладных типов. Хорошо разработанный тип, определяемый пользователем, отличается от встроенного типа только способом определения, но не способом использования.
Реализация С++ очень легко переносима. Однако есть полные основания использовать С++ в среде, где имеется гораздо более существенная поддержка. Такие средства, как динамическая загрузка, пошаговая трансляция и база данных определений типов могут с пользой применяться без воздействия на язык.
Типы и средства сокрытия данных в С++ опираются на проводимый во время компиляции анализ программ с целью предотвращения случайного искажения данных. Они не обеспечивают секретности или защиты от умышленного нарушения правил. Однако эти средства можно использовать без ограничений, что не приводит к дополнительным расходам времени на выполнение или пространства памяти.
Компилятор Microsoft C++ и среда разработки Microsoft Visual Studio
В качестве компилятора для разработки приложения был выбран Microsoft C++ по следующим причинам:
4.3 Описание программы
Разработанное приложение поставляется в виде 2-ух файлов:
Для выполнения исполняемого файла необходима одна из ниже перечисленных операционных систем:
Программа не требует предварительной установки и может быть сразу же запущена на выполнение.
Исходный код приложения может быть откомпилирован в любом ANSI или POSIX совместимом компиляторе С++ для получения выполнимой программы. Для успешной компиляции требуется наличие стандартной библиотеки «iostream».
5. Контрольный пример
Данный метод протестирован на контрольном примере и реализован с помощью языка программирования С++.
В результате вычислений контрольного примера вида y’=2x+y с интервалом [0,1],
количеством шагов равному 5 и начальным условием у равным 1, с помощью программы, получились следующие результаты:
Информация о работе Решение дифференциальных уравнений 1 порядка методом Эйлера