Решение дифференциальных уравнений 1 порядка методом Эйлера

Автор работы: Пользователь скрыл имя, 06 Декабря 2013 в 07:36, реферат

Описание работы

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.
Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели.

Содержание работы

Введение 3
1. Постановка задачи 5
2. Обзор существующих методов решения задачи 6 2.1.Метод Рунге-Кутта четвертого порядка для решения
уравнения первого порядка 6
2.2.Задача Коши 6
2.3.Метод Булирша- Штера с использованием
рациональной экстраполяции для системы уравнений 7
2.4 Метод Адамса 8
2.5. Метод Эйлера 9
3. Описание алгоритмов решения задания 13
3.1. Описание переменных 13
3.2. Блок- схема главного модуля 14
3.3. Описание алгоритма главной программы 14
3.4. Блок-схема функции “func” 15
3.5. Описание блок- схемы функции “func” 15
4. Описание программного обеспечения 16
4.1. Описание операционной системы 16
4.2. Описание языка программирования 18
4.3. Описание программы 19
5. Контрольный пример 21
6.Анализ полученных результатов 22
Список литературы 24
Приложение 25

Файлы: 1 файл

Решение дифференциальных уравнений 1 порядка методом Эйлера.doc

— 243.50 Кб (Скачать файл)

  Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

     Модифицированный  метод Эйлера

Рассмотрим дифференциальное уравнение (2.5.1)  y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим    прямой                      линией.

                                           Рис.1 Метод Эйлера в графическом видa

 

 Получаем точку Мккк). Через Мк проводим касательную:  у=ук=f(xk,yk)(x-xk). Делим отрезок (хкк1) пополам:

                                          xNk/=xk+h/2=xk+1/2                                                (2.5.6)

                                               yNk/=yk+f(xk,yk)h/2=yk+yk+1/2

Получаем точку Nk/. В этой точке строим следующую касательную:

                                           y(xk+1/2)=f(xk+1/2, yk+1/2)=αk                           (2.5.7)

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:

                                           ук+1ккh

                                           xk+1=xk+h

                          (2.5.8)                αk=f(xk+h/2, yk+f(xk,Yk)h/2)

                                           yk=yk-1+f(xk-1,yk-1)h

(2.5.8)-рекурентные формулы метода Эйлера.

      Сначала вычисляют  вспомогательные значения искомой  функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (11) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

      Для оценки погрешности  в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

                                          | ук*-у(хк)|=1/3(yk*-yk),                          (2.5.9)

где у(х)-точное решение дифференциального  уравнения.

 Таким образом, методом Эйлера  можно решать уравнения любых  порядков. Например, чтобы решить  уравнение второго порядка  y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена:

                                            y/=z                                                     (2.5.10)

                                            z/=f(x,y,z)

Тем самым преобразуются начальные  условия: y(x0)=y0, z(x0)=z0, z0=y/0.    (2.5.12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.Описание алгоритмов решения задачи

3.1.Описание переменных.

Наименование 

Тип

Описание

Входные данные

Xi

double

Начальное значение (x) интервала вычисления

Xkon

double

Конечное значение (x) интервала вычисления

n

integer

Количество шагов

Yi

double

Начальное значение y

kx

double

Коэффициент при переменой  x

ky

double

Коэффициент при переменной y

Выходные данные

h

double

Фиксированное приращение аргумента (x)

res

double

Расчётное значение уравнение y’=F(x,y) в точке (x)

Промежуточные

i

integer

Счётчик цикла

Yprom

double

Промежуточное значение y в точке Xprom

Xprom

double

Промежуточное значение x при h/2

a

double

Решение уравнения в точках f(Xprom,Yprom)

f1

double

Функция f(x,y)


3.2. Блок- схема главного модуля

 

3.3 Описание алгоритма главной программы.

Номер блока

Описание

1

Ввод начального и конечного  значений интервала вычисления уравнения, количество шагов, начальное значение у, а также коэффициенты при kx и ky.

2

Вычисление фиксированного приращения аргумента х

3

Цикл с шагом 1 и конечным значением  не превышающим количество шагов, который  высчитывает значение   y на определённом интервале

4

Функция для расчёта уравнения  вида y’=f(x,y);

 

5

 

Вывод результатов на интервале X


3.4 Блок-схема функции “func”.

3.5 Описание блок- схемы функции “func”.

Номер

блока

Описание

1

Вычисление: функции f1 с подстановкой начальных значений; промежуточных значений Yprom и Xprom,  значения a для вычисления f(Xprom,Yprom) и расчёт результатов функции и переход на следующий шаг.

2

Приращение аргумента x на h

3

Вывод результатов уравнения и  интервала


 

*Реализация алгоритма  на языке программирования C++ представлена в приложении .

 

 

 

4.Описание программного обеспечения.

4.1 Описание операционной системы

 

Основное требование к операционной системе (ОС), предъявляемое поставленной задачей, это наличие ANSI или POSIX совместимого компилятора языка C++.

Для реализации задачи была выбрана последняя клиентская версия операционной системы Microsoft, основанная на ядре NT – Microsoft Windows XP Professional.

Указанная операционная система обладает рядом преимуществ:

  • наличие достаточного количество ANSI или POSIX совместимых компиляторов языка C++, разработанных для данной ОС, а именно –
    • Microsoft C++ (version 2-6)
    • gcc
    • Borland  C++
    • Intel C++
    • прочие;
  • достаточная управляемость,  надежность и безопасность;
  • широкое распространение основанных на ядре NT операционных систем Microsoft, совместимых по программному обеспечению с Windows XP Professional (NT/2000/XP/2003 – client & server);
  • высокая скорость работы приложений, разработанных для данной ОС с использованием компиляторов C++.

 

Исходный код программы может  быть откомпилирован и под другой операционной системой, если для таковой имеется ANSI или POSIX совместимый компилятор языка C++.

Программа была протестирована на операционной системе Microsoft Windows XP Professional SP1.

Технические данные :

    • HDD: 60 Gb
    • Процессор x86 Family 15 Model 2 Stepping 7 GenuineIntel ~1817 МГц
    • Версия BIOS Award Software International, Inc. F4, 06.03.2003
    • Аппаратно-зависимый уровень (HAL) Версия = "5.1.2600.1106 (xpsp1.020828-1920)"
    • Полный объем физической памяти 256,00 МБ
    • Доступно физической памяти 29,97 МБ
    • Всего виртуальной памяти 873,69 МБ
    • Доступно виртуальной памяти 350,04 МБ
    • Файл подкачки 618,21 МБ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Описание языка программирования

Язык программирования С++

С++ - это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на лег ко поддающиеся контролю части.  Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы.

В С++ нет типов данных высокого уровня и нет первичных операций высокого уровня. В нем нет, например, матричного типа с операцией обращения или типа строка с операцией конкатенации. Если пользователю понадобятся подобные типы, их можно определить в самом языке. По сути дела, основное, чем занимается программирование на С++ - это определение универсальных и специально-прикладных типов. Хорошо разработанный тип, определяемый пользователем, отличается от встроенного типа только способом определения, но не способом использования.

Реализация С++ очень легко переносима. Однако есть полные основания использовать С++ в среде, где имеется гораздо  более существенная поддержка. Такие средства, как динамическая загрузка, пошаговая трансляция и база данных определений типов могут с пользой применяться  без  воздействия на язык.

Типы и средства сокрытия данных в С++ опираются на проводимый во время компиляции анализ программ с целью  предотвращения случайного искажения данных. Они не обеспечивают секретности или защиты от умышленного нарушения правил. Однако эти средства можно использовать без ограничений, что не приводит к дополнительным расходам времени на  выполнение или пространства памяти.

 

Компилятор Microsoft C++ и среда разработки Microsoft Visual Studio

 

В качестве компилятора для разработки приложения был выбран Microsoft C++ по следующим причинам:

  • практически полная совместимость со стандартом ANSI C++;
  • наличие удобной среды разработки Microsoft Visual Studio;
  • наличие отличной документации;
  • высокая скорость работы результирующих приложений;
  • совместимость разработанных приложений с большим количеством широко распространенных операционных систем;
  • достаточная скорость компиляции.

4.3 Описание программы

Разработанное приложение поставляется в виде 2-ух файлов:

  1. method Eulera.cpp – исходный код программы на языке C++;
  2. method Eulera.exe – исполняемый файл.

Для выполнения исполняемого файла  необходима одна из ниже перечисленных  операционных систем:

  • Microsoft Windows 3.11+Win32s;
  • Microsoft Windows 95/98/Me;
  • Microsoft Windows NT/2000/XP/2003 – клиентская или серверная версия.

   Программа не требует  предварительной установки и  может быть сразу же запущена  на выполнение.

Исходный код приложения может быть откомпилирован в любом ANSI или POSIX совместимом компиляторе С++ для получения выполнимой программы. Для успешной компиляции требуется наличие стандартной библиотеки «iostream».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Контрольный пример

Данный метод протестирован на контрольном примере и реализован с помощью языка программирования С++.

В результате вычислений контрольного примера вида y’=2x+y с интервалом [0,1],

количеством шагов равному 5 и начальным условием у равным 1, с помощью программы, получились следующие результаты:

Информация о работе Решение дифференциальных уравнений 1 порядка методом Эйлера